Cargando…
Graph convolutional networks fusing motif-structure information
With the advent of the wave of big data, the generation of more and more graph data brings great pressure to the traditional deep learning model. The birth of graph neural network fill the gap of deep learning in graph data. At present, graph convolutional networks (GCN) have surpassed traditional m...
Autores principales: | Wang, Bin, Cheng, LvHang, Sheng, JinFang, Hou, ZhengAng, Chang, YaoXing |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9232539/ https://www.ncbi.nlm.nih.gov/pubmed/35750771 http://dx.doi.org/10.1038/s41598-022-13277-z |
Ejemplares similares
-
A fused biometrics information graph convolutional neural network for effective classification of patellofemoral pain syndrome
por: Xiong, Baoping, et al.
Publicado: (2022) -
Graph Convolutional Network: Traffic Speed Prediction Fused with Traffic Flow Data
por: Liu, Duanyang, et al.
Publicado: (2021) -
FGCNSurv: dually fused graph convolutional network for multi-omics survival prediction
por: Wen, Gang, et al.
Publicado: (2023) -
FGCN: Image-Fused Point Cloud Semantic Segmentation with Fusion Graph Convolutional Network
por: Zhang, Kun, et al.
Publicado: (2023) -
Enhancing Basketball Game Outcome Prediction through Fused Graph Convolutional Networks and Random Forest Algorithm
por: Zhao, Kai, et al.
Publicado: (2023)