Cargando…
Automatic symptoms identification from a massive volume of unstructured medical consultations using deep neural and BERT models
Automatic symptom identification plays a crucial role in assisting doctors during the diagnosis process in Telemedicine. In general, physicians spend considerable time on clinical documentation and symptom identification, which is unfeasible due to their full schedule. With text-based consultation s...
Autores principales: | Faris, Hossam, Faris, Mohammad, Habib, Maria, Alomari, Alaa |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9233221/ https://www.ncbi.nlm.nih.gov/pubmed/35761935 http://dx.doi.org/10.1016/j.heliyon.2022.e09683 |
Ejemplares similares
-
Toward an Automatic Quality Assessment of Voice-Based Telemedicine Consultations: A Deep Learning Approach
por: Habib, Maria, et al.
Publicado: (2021) -
Accurate and Reliable Classification of Unstructured Reports on Their Diagnostic Goal Using BERT Models
por: Rietberg, Max Tigo, et al.
Publicado: (2023) -
Specialty detection in the context of telemedicine in a highly imbalanced multi-class distribution
por: Alomari, Alaa, et al.
Publicado: (2023) -
srBERT: automatic article classification model for systematic review using BERT
por: Aum, Sungmin, et al.
Publicado: (2021) -
IUP-BERT: Identification of Umami Peptides Based on BERT Features
por: Jiang, Liangzhen, et al.
Publicado: (2022)