Cargando…
Automatic Detection of Abnormalities and Grading of Diabetic Retinopathy in 6-Field Retinal Images: Integration of Segmentation Into Classification
PURPOSE: Classification of diabetic retinopathy (DR) is traditionally based on severity grading, given by the most advanced lesion, but potentially leaving out relevant information for risk stratification. In this study, we aimed to develop a deep learning model able to individually segment seven di...
Autores principales: | Andersen, Jakob K. H., Hubel, Martin S., Rasmussen, Malin L., Grauslund, Jakob, Savarimuthu, Thiusius R. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The Association for Research in Vision and Ophthalmology
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9233290/ https://www.ncbi.nlm.nih.gov/pubmed/35731541 http://dx.doi.org/10.1167/tvst.11.6.19 |
Ejemplares similares
-
A digital online platform for education and certification of diabetic retinopathy health care professionals in the Region of Southern Denmark
por: Andersen, Jakob Kristian Holm, et al.
Publicado: (2022) -
Neural networks for automatic scoring of arthritis disease activity on ultrasound images
por: Andersen, Jakob Kristian Holm, et al.
Publicado: (2019) -
Noninvasive Retinal Markers in Diabetic Retinopathy: Advancing from Bench towards Bedside
por: Blindbæk, Søren Leer, et al.
Publicado: (2017) -
Changes in retinal venular oxygen saturation predict activity of proliferative diabetic retinopathy 3 months after panretinal photocoagulation
por: Torp, Thomas Lee, et al.
Publicado: (2018) -
Temporal changes in retinal vascular parameters associated with successful panretinal photocoagulation in proliferative diabetic retinopathy: A prospective clinical interventional study
por: Torp, Thomas Lee, et al.
Publicado: (2017)