Cargando…

Microbiome function underpins the efficacy of a fiber-supplemented dietary intervention in dogs with chronic large bowel diarrhea

BACKGROUND: Chronic large bowel diarrhea is a common occurrence in pet dogs. While nutritional intervention is considered the primary therapy, the metabolic and gut microfloral effects of fiber and polyphenol-enriched therapeutic foods are poorly understood. METHODS: This prospective clinical study...

Descripción completa

Detalles Bibliográficos
Autores principales: Fritsch, Dale A., Jackson, Matthew I., Wernimont, Susan M., Feld, Geoffrey K., MacLeay, Jennifer M., Brejda, John J., Cochrane, Chun-Yen, Gross, Kathy L.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9233311/
https://www.ncbi.nlm.nih.gov/pubmed/35751094
http://dx.doi.org/10.1186/s12917-022-03315-3
Descripción
Sumario:BACKGROUND: Chronic large bowel diarrhea is a common occurrence in pet dogs. While nutritional intervention is considered the primary therapy, the metabolic and gut microfloral effects of fiber and polyphenol-enriched therapeutic foods are poorly understood. METHODS: This prospective clinical study enrolled 31 adult dogs from private veterinary practices with chronic, active large bowel diarrhea. Enrolled dogs received a complete and balanced dry therapeutic food containing a proprietary fiber bundle for 56 days. Metagenomic and metabolomic profiling were performed on fecal samples at Days 1, 2, 3, 14, 28, and 56; metabolomic analysis was conducted on serum samples taken at Days 1, 2, 3, 28, and 56. RESULTS: The dietary intervention improved clinical signs and had a clear effect on the gut microfloral metabolic output of canines with chronic diarrhea, shifting gut metabolism from a predominantly proteolytic to saccharolytic fermentative state. Microbial metabolism of tryptophan to beneficial indole postbiotics and the conversion of plant-derived phenolics into bioavailable postbiotics were observed. The intervention altered the endocannabinoid, polyunsaturated fatty acid, and sphingolipid profiles, suggesting a modulation in gastrointestinal inflammation. Changes in membrane phospholipid and collagen signatures were indicative of improved gut function and possible alleviation of the pathophysiology related to chronic diarrhea. CONCLUSIONS: In dogs with chronic diarrhea, feeding specific dietary fibers increased gut saccharolysis and bioavailable phenolic and indole-related compounds, while suppressing putrefaction. These changes were associated with improved markers of gut inflammation and stool quality. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1186/s12917-022-03315-3.