Cargando…

Model-based driving mechanism analysis for butyric acid production in Clostridium tyrobutyricum

BACKGROUND: Butyric acid, an essential C4 platform chemical, is widely used in food, pharmaceutical, and animal feed industries. Clostridium tyrobutyricum is the most promising microorganism for industrial bio-butyrate production. However, the metabolic driving mechanism for butyrate synthesis was s...

Descripción completa

Detalles Bibliográficos
Autores principales: Feng, Jun, Guo, Xiaolong, Cai, Feifei, Fu, Hongxin, Wang, Jufang
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9233315/
https://www.ncbi.nlm.nih.gov/pubmed/35752796
http://dx.doi.org/10.1186/s13068-022-02169-z
Descripción
Sumario:BACKGROUND: Butyric acid, an essential C4 platform chemical, is widely used in food, pharmaceutical, and animal feed industries. Clostridium tyrobutyricum is the most promising microorganism for industrial bio-butyrate production. However, the metabolic driving mechanism for butyrate synthesis was still not profoundly studied. RESULTS: This study reports a first-generation genome-scale model (GEM) for C. tyrobutyricum, which provides a comprehensive and systematic analysis for the butyrate synthesis driving mechanisms. Based on the analysis in silico, an energy conversion system, which couples the proton efflux with butyryl-CoA transformation by two redox loops of ferredoxin, could be the main driving force for butyrate synthesis. For verifying the driving mechanism, a hydrogenase (HydA) expression was perturbed by inducible regulation and knockout. The results showed that HydA deficiency significantly improved the intracellular NADH/NAD(+) rate, decreased acetate accumulation (63.6% in serum bottle and 58.1% in bioreactor), and improved the yield of butyrate (26.3% in serum bottle and 34.5% in bioreactor). It was in line with the expectation based on the energy conversion coupling driving mechanism. CONCLUSIONS: This work show that the first-generation GEM and coupling metabolic analysis effectively promoted in-depth understanding of the metabolic driving mechanism in C. tyrobutyricum and provided a new insight for tuning metabolic flux direction in Clostridium chassis cells. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1186/s13068-022-02169-z.