Cargando…
Research on Segmenting E-Commerce Customer through an Improved K-Medoids Clustering Algorithm
In view of the shortcomings of traditional clustering algorithms in feature selection and clustering effect, an improved Recency, Frequency, and Money (RFM) model is introduced, and an improved K-medoids algorithm is proposed. Above model and algorithm are employed to segment customers of e-commerce...
Autores principales: | Wu, Zengyuan, Jin, Lingmin, Zhao, Jiali, Jing, Lizheng, Chen, Liang |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9233613/ https://www.ncbi.nlm.nih.gov/pubmed/35761867 http://dx.doi.org/10.1155/2022/9930613 |
Ejemplares similares
-
Clustering and Characterization of the Lactation Curves of Dairy Cows Using K-Medoids Clustering Algorithm
por: Lee, Mingyung, et al.
Publicado: (2020) -
Selecting Representative Samples From Complex Biological Datasets Using K-Medoids Clustering
por: Li, Lei, et al.
Publicado: (2022) -
K‐medoids clustering of hospital admission characteristics to classify severity of influenza virus infection
por: Leis, Aleda M., et al.
Publicado: (2023) -
Alignment-free clustering of transcription factor binding motifs using a genetic-k-medoids approach
por: Broin, Pilib Ó, et al.
Publicado: (2015) -
XGBoost-Based E-Commerce Customer Loss Prediction
por: Gan, Lin
Publicado: (2022)