Cargando…

Wiskott-Aldrich syndrome protein forms nuclear condensates and regulates alternative splicing

The diverse functions of WASP, the deficiency of which causes Wiskott-Aldrich syndrome (WAS), remain poorly defined. We generated three isogenic WAS models using patient induced pluripotent stem cells and genome editing. These models recapitulated WAS phenotypes and revealed that WASP deficiency cau...

Descripción completa

Detalles Bibliográficos
Autores principales: Yuan, Baolei, Zhou, Xuan, Suzuki, Keiichiro, Ramos-Mandujano, Gerardo, Wang, Mengge, Tehseen, Muhammad, Cortés-Medina, Lorena V., Moresco, James J., Dunn, Sarah, Hernandez-Benitez, Reyna, Hishida, Tomoaki, Kim, Na Young, Andijani, Manal M., Bi, Chongwei, Ku, Manching, Takahashi, Yuta, Xu, Jinna, Qiu, Jinsong, Huang, Ling, Benner, Christopher, Aizawa, Emi, Qu, Jing, Liu, Guang-Hui, Li, Zhongwei, Yi, Fei, Ghosheh, Yanal, Shao, Changwei, Shokhirev, Maxim, Comoli, Patrizia, Frassoni, Francesco, Yates, John R., Fu, Xiang-Dong, Esteban, Concepcion Rodriguez, Hamdan, Samir, Izpisua Belmonte, Juan Carlos, Li, Mo
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9233711/
https://www.ncbi.nlm.nih.gov/pubmed/35752626
http://dx.doi.org/10.1038/s41467-022-31220-8
_version_ 1784735863163322368
author Yuan, Baolei
Zhou, Xuan
Suzuki, Keiichiro
Ramos-Mandujano, Gerardo
Wang, Mengge
Tehseen, Muhammad
Cortés-Medina, Lorena V.
Moresco, James J.
Dunn, Sarah
Hernandez-Benitez, Reyna
Hishida, Tomoaki
Kim, Na Young
Andijani, Manal M.
Bi, Chongwei
Ku, Manching
Takahashi, Yuta
Xu, Jinna
Qiu, Jinsong
Huang, Ling
Benner, Christopher
Aizawa, Emi
Qu, Jing
Liu, Guang-Hui
Li, Zhongwei
Yi, Fei
Ghosheh, Yanal
Shao, Changwei
Shokhirev, Maxim
Comoli, Patrizia
Frassoni, Francesco
Yates, John R.
Fu, Xiang-Dong
Esteban, Concepcion Rodriguez
Hamdan, Samir
Izpisua Belmonte, Juan Carlos
Li, Mo
author_facet Yuan, Baolei
Zhou, Xuan
Suzuki, Keiichiro
Ramos-Mandujano, Gerardo
Wang, Mengge
Tehseen, Muhammad
Cortés-Medina, Lorena V.
Moresco, James J.
Dunn, Sarah
Hernandez-Benitez, Reyna
Hishida, Tomoaki
Kim, Na Young
Andijani, Manal M.
Bi, Chongwei
Ku, Manching
Takahashi, Yuta
Xu, Jinna
Qiu, Jinsong
Huang, Ling
Benner, Christopher
Aizawa, Emi
Qu, Jing
Liu, Guang-Hui
Li, Zhongwei
Yi, Fei
Ghosheh, Yanal
Shao, Changwei
Shokhirev, Maxim
Comoli, Patrizia
Frassoni, Francesco
Yates, John R.
Fu, Xiang-Dong
Esteban, Concepcion Rodriguez
Hamdan, Samir
Izpisua Belmonte, Juan Carlos
Li, Mo
author_sort Yuan, Baolei
collection PubMed
description The diverse functions of WASP, the deficiency of which causes Wiskott-Aldrich syndrome (WAS), remain poorly defined. We generated three isogenic WAS models using patient induced pluripotent stem cells and genome editing. These models recapitulated WAS phenotypes and revealed that WASP deficiency causes an upregulation of numerous RNA splicing factors and widespread altered splicing. Loss of WASP binding to splicing factor gene promoters frequently leads to aberrant epigenetic activation. WASP interacts with dozens of nuclear speckle constituents and constrains SRSF2 mobility. Using an optogenetic system, we showed that WASP forms phase-separated condensates that encompasses SRSF2, nascent RNA and active Pol II. The role of WASP in gene body condensates is corroborated by ChIPseq and RIPseq. Together our data reveal that WASP is a nexus regulator of RNA splicing that controls the transcription of splicing factors epigenetically and the dynamics of the splicing machinery through liquid-liquid phase separation.
format Online
Article
Text
id pubmed-9233711
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher Nature Publishing Group UK
record_format MEDLINE/PubMed
spelling pubmed-92337112022-06-27 Wiskott-Aldrich syndrome protein forms nuclear condensates and regulates alternative splicing Yuan, Baolei Zhou, Xuan Suzuki, Keiichiro Ramos-Mandujano, Gerardo Wang, Mengge Tehseen, Muhammad Cortés-Medina, Lorena V. Moresco, James J. Dunn, Sarah Hernandez-Benitez, Reyna Hishida, Tomoaki Kim, Na Young Andijani, Manal M. Bi, Chongwei Ku, Manching Takahashi, Yuta Xu, Jinna Qiu, Jinsong Huang, Ling Benner, Christopher Aizawa, Emi Qu, Jing Liu, Guang-Hui Li, Zhongwei Yi, Fei Ghosheh, Yanal Shao, Changwei Shokhirev, Maxim Comoli, Patrizia Frassoni, Francesco Yates, John R. Fu, Xiang-Dong Esteban, Concepcion Rodriguez Hamdan, Samir Izpisua Belmonte, Juan Carlos Li, Mo Nat Commun Article The diverse functions of WASP, the deficiency of which causes Wiskott-Aldrich syndrome (WAS), remain poorly defined. We generated three isogenic WAS models using patient induced pluripotent stem cells and genome editing. These models recapitulated WAS phenotypes and revealed that WASP deficiency causes an upregulation of numerous RNA splicing factors and widespread altered splicing. Loss of WASP binding to splicing factor gene promoters frequently leads to aberrant epigenetic activation. WASP interacts with dozens of nuclear speckle constituents and constrains SRSF2 mobility. Using an optogenetic system, we showed that WASP forms phase-separated condensates that encompasses SRSF2, nascent RNA and active Pol II. The role of WASP in gene body condensates is corroborated by ChIPseq and RIPseq. Together our data reveal that WASP is a nexus regulator of RNA splicing that controls the transcription of splicing factors epigenetically and the dynamics of the splicing machinery through liquid-liquid phase separation. Nature Publishing Group UK 2022-06-25 /pmc/articles/PMC9233711/ /pubmed/35752626 http://dx.doi.org/10.1038/s41467-022-31220-8 Text en © The Author(s) 2022, corrected publication 2022 https://creativecommons.org/licenses/by/4.0/Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) .
spellingShingle Article
Yuan, Baolei
Zhou, Xuan
Suzuki, Keiichiro
Ramos-Mandujano, Gerardo
Wang, Mengge
Tehseen, Muhammad
Cortés-Medina, Lorena V.
Moresco, James J.
Dunn, Sarah
Hernandez-Benitez, Reyna
Hishida, Tomoaki
Kim, Na Young
Andijani, Manal M.
Bi, Chongwei
Ku, Manching
Takahashi, Yuta
Xu, Jinna
Qiu, Jinsong
Huang, Ling
Benner, Christopher
Aizawa, Emi
Qu, Jing
Liu, Guang-Hui
Li, Zhongwei
Yi, Fei
Ghosheh, Yanal
Shao, Changwei
Shokhirev, Maxim
Comoli, Patrizia
Frassoni, Francesco
Yates, John R.
Fu, Xiang-Dong
Esteban, Concepcion Rodriguez
Hamdan, Samir
Izpisua Belmonte, Juan Carlos
Li, Mo
Wiskott-Aldrich syndrome protein forms nuclear condensates and regulates alternative splicing
title Wiskott-Aldrich syndrome protein forms nuclear condensates and regulates alternative splicing
title_full Wiskott-Aldrich syndrome protein forms nuclear condensates and regulates alternative splicing
title_fullStr Wiskott-Aldrich syndrome protein forms nuclear condensates and regulates alternative splicing
title_full_unstemmed Wiskott-Aldrich syndrome protein forms nuclear condensates and regulates alternative splicing
title_short Wiskott-Aldrich syndrome protein forms nuclear condensates and regulates alternative splicing
title_sort wiskott-aldrich syndrome protein forms nuclear condensates and regulates alternative splicing
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9233711/
https://www.ncbi.nlm.nih.gov/pubmed/35752626
http://dx.doi.org/10.1038/s41467-022-31220-8
work_keys_str_mv AT yuanbaolei wiskottaldrichsyndromeproteinformsnuclearcondensatesandregulatesalternativesplicing
AT zhouxuan wiskottaldrichsyndromeproteinformsnuclearcondensatesandregulatesalternativesplicing
AT suzukikeiichiro wiskottaldrichsyndromeproteinformsnuclearcondensatesandregulatesalternativesplicing
AT ramosmandujanogerardo wiskottaldrichsyndromeproteinformsnuclearcondensatesandregulatesalternativesplicing
AT wangmengge wiskottaldrichsyndromeproteinformsnuclearcondensatesandregulatesalternativesplicing
AT tehseenmuhammad wiskottaldrichsyndromeproteinformsnuclearcondensatesandregulatesalternativesplicing
AT cortesmedinalorenav wiskottaldrichsyndromeproteinformsnuclearcondensatesandregulatesalternativesplicing
AT morescojamesj wiskottaldrichsyndromeproteinformsnuclearcondensatesandregulatesalternativesplicing
AT dunnsarah wiskottaldrichsyndromeproteinformsnuclearcondensatesandregulatesalternativesplicing
AT hernandezbenitezreyna wiskottaldrichsyndromeproteinformsnuclearcondensatesandregulatesalternativesplicing
AT hishidatomoaki wiskottaldrichsyndromeproteinformsnuclearcondensatesandregulatesalternativesplicing
AT kimnayoung wiskottaldrichsyndromeproteinformsnuclearcondensatesandregulatesalternativesplicing
AT andijanimanalm wiskottaldrichsyndromeproteinformsnuclearcondensatesandregulatesalternativesplicing
AT bichongwei wiskottaldrichsyndromeproteinformsnuclearcondensatesandregulatesalternativesplicing
AT kumanching wiskottaldrichsyndromeproteinformsnuclearcondensatesandregulatesalternativesplicing
AT takahashiyuta wiskottaldrichsyndromeproteinformsnuclearcondensatesandregulatesalternativesplicing
AT xujinna wiskottaldrichsyndromeproteinformsnuclearcondensatesandregulatesalternativesplicing
AT qiujinsong wiskottaldrichsyndromeproteinformsnuclearcondensatesandregulatesalternativesplicing
AT huangling wiskottaldrichsyndromeproteinformsnuclearcondensatesandregulatesalternativesplicing
AT bennerchristopher wiskottaldrichsyndromeproteinformsnuclearcondensatesandregulatesalternativesplicing
AT aizawaemi wiskottaldrichsyndromeproteinformsnuclearcondensatesandregulatesalternativesplicing
AT qujing wiskottaldrichsyndromeproteinformsnuclearcondensatesandregulatesalternativesplicing
AT liuguanghui wiskottaldrichsyndromeproteinformsnuclearcondensatesandregulatesalternativesplicing
AT lizhongwei wiskottaldrichsyndromeproteinformsnuclearcondensatesandregulatesalternativesplicing
AT yifei wiskottaldrichsyndromeproteinformsnuclearcondensatesandregulatesalternativesplicing
AT ghoshehyanal wiskottaldrichsyndromeproteinformsnuclearcondensatesandregulatesalternativesplicing
AT shaochangwei wiskottaldrichsyndromeproteinformsnuclearcondensatesandregulatesalternativesplicing
AT shokhirevmaxim wiskottaldrichsyndromeproteinformsnuclearcondensatesandregulatesalternativesplicing
AT comolipatrizia wiskottaldrichsyndromeproteinformsnuclearcondensatesandregulatesalternativesplicing
AT frassonifrancesco wiskottaldrichsyndromeproteinformsnuclearcondensatesandregulatesalternativesplicing
AT yatesjohnr wiskottaldrichsyndromeproteinformsnuclearcondensatesandregulatesalternativesplicing
AT fuxiangdong wiskottaldrichsyndromeproteinformsnuclearcondensatesandregulatesalternativesplicing
AT estebanconcepcionrodriguez wiskottaldrichsyndromeproteinformsnuclearcondensatesandregulatesalternativesplicing
AT hamdansamir wiskottaldrichsyndromeproteinformsnuclearcondensatesandregulatesalternativesplicing
AT izpisuabelmontejuancarlos wiskottaldrichsyndromeproteinformsnuclearcondensatesandregulatesalternativesplicing
AT limo wiskottaldrichsyndromeproteinformsnuclearcondensatesandregulatesalternativesplicing