Cargando…
Machine learning to predict post-operative acute kidney injury stage 3 after heart transplantation
BACKGROUND: Acute kidney injury (AKI) stage 3, one of the most severe complications in patients with heart transplantation (HT), is associated with substantial morbidity and mortality. We aimed to develop a machine learning (ML) model to predict post-transplant AKI stage 3 based on preoperative and...
Autores principales: | Li, Tingyu, Yang, Yuelong, Huang, Jinsong, Chen, Rui, Wu, Yijin, Li, Zhuo, Lin, Guisen, Liu, Hui, Wu, Min |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9233761/ https://www.ncbi.nlm.nih.gov/pubmed/35752766 http://dx.doi.org/10.1186/s12872-022-02721-7 |
Ejemplares similares
-
Fine needle aspirates of kidneys: a promising tool for RNA sequencing in native and transplanted kidneys
por: Eikrem, Øystein, et al.
Publicado: (2018) -
The impact of systematic review of status 7 patients on the kidney transplant waitlist
por: Kataria, Ashish, et al.
Publicado: (2019) -
Predicting patient survival after deceased donor kidney transplantation using flexible parametric modelling
por: Li, Bernadette, et al.
Publicado: (2016) -
A comparative study on the efficacy of a retrograde perfusion technique and an antegrade perfusion technique for donor kidney recovery in transplantation in pigs
por: Han, Xiuwu, et al.
Publicado: (2017) -
Distinct stage-specific transcriptional states of B cells derived from human tonsillar tissue
por: Espinoza, Diego A., et al.
Publicado: (2023)