Cargando…
Early prediction of ventilator-associated pneumonia in critical care patients: a machine learning model
BACKGROUND: This study was performed to develop and validate machine learning models for early detection of ventilator-associated pneumonia (VAP) 24 h before diagnosis, so that VAP patients can receive early intervention and reduce the occurrence of complications. PATIENTS AND METHODS: This study wa...
Autores principales: | Liang, Yingjian, Zhu, Chengrui, Tian, Cong, Lin, Qizhong, Li, Zhiliang, Li, Zhifei, Ni, Dongshu, Ma, Xiaochun |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9233772/ https://www.ncbi.nlm.nih.gov/pubmed/35752818 http://dx.doi.org/10.1186/s12890-022-02031-w |
Ejemplares similares
-
Persistently higher serum sCD40L levels are associated with outcome in septic patients
por: Liang, Yingjian, et al.
Publicado: (2021) -
Role of pyroptosis in hemostasis activation in sepsis
por: Zhu, Chengrui, et al.
Publicado: (2023) -
Predicting ventilator-associated pneumonia with machine learning
por: Giang, Christine, et al.
Publicado: (2021) -
Early pulmonary rehabilitation for SARS-CoV-2 pneumonia: Experience from an intensive care unit outside of the Hubei province in China
por: Zhu, Chengrui, et al.
Publicado: (2020) -
Machine learning models for predicting critical illness risk in hospitalized patients with COVID-19 pneumonia
por: Liu, Qin, et al.
Publicado: (2021)