Cargando…
Designing optimized drug candidates with Generative Adversarial Network
Drug design is an important area of study for pharmaceutical businesses. However, low efficacy, off-target delivery, time consumption, and high cost are challenges and can create barriers that impact this process. Deep Learning models are emerging as a promising solution to perform de novo drug desi...
Autores principales: | Abbasi, Maryam, Santos, Beatriz P., Pereira, Tiago C., Sofia, Raul, Monteiro, Nelson R. C., Simões, Carlos J. V., Brito, Rui, Ribeiro, Bernardete, Oliveira, José L., Arrais, Joel P. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer International Publishing
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9233801/ https://www.ncbi.nlm.nih.gov/pubmed/35754029 http://dx.doi.org/10.1186/s13321-022-00623-6 |
Ejemplares similares
-
Correction to: Designing optimized drug candidates with Generative Adversarial Network
por: Abbasi, Maryam, et al.
Publicado: (2022) -
Diversity oriented Deep Reinforcement Learning for targeted molecule generation
por: Pereira, Tiago, et al.
Publicado: (2021) -
Optimizing blood–brain barrier permeation through deep reinforcement learning for de novo drug design
por: Pereira, Tiago, et al.
Publicado: (2021) -
Explainable deep drug–target representations for binding affinity prediction
por: Monteiro, Nelson R. C., et al.
Publicado: (2022) -
Artificial intelligence for prediction of biological activities and generation of molecular hits using stereochemical information
por: Pereira, Tiago O., et al.
Publicado: (2023)