Cargando…
Molecular docking and machine learning affinity prediction of compounds identified upon softwood bark extraction to the main protease of the SARS-CoV-2 virus
Molecular docking of 234 unique compounds identified in the softwood bark (W set) is presented with a focus on their inhibition potential to the main protease of the SARS-CoV-2 virus 3CL(pro) (6WQF). The docking results are compared with the docking results of 866 COVID19-related compounds (S set)....
Autores principales: | Jablonský, Michal, Štekláč, Marek, Majová, Veronika, Gall, Marián, Matúška, Ján, Pitoňák, Michal, Bučinský, Lukáš |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Published by Elsevier B.V.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9233873/ https://www.ncbi.nlm.nih.gov/pubmed/35810518 http://dx.doi.org/10.1016/j.bpc.2022.106854 |
Ejemplares similares
-
Machine learning prediction of 3CL(pro) SARS-CoV-2 docking scores
por: Bucinsky, Lukas, et al.
Publicado: (2022) -
3CL(pro) and PL(pro) affinity, a docking study to fight COVID19 based on 900 compounds from PubChem and literature. Are there new drugs to be found?
por: Štekláč, Marek, et al.
Publicado: (2021) -
A Comprehensive Characterization of Pyrolysis Oil from Softwood Barks
por: Ben, Haoxi, et al.
Publicado: (2019) -
Removal of Water-Soluble Extractives Improves the Enzymatic Digestibility of Steam-Pretreated Softwood Barks
por: Frankó, Balázs, et al.
Publicado: (2017) -
Antioxidant and Wound Healing Bioactive Potential of Extracts Obtained from Bark and Needles of Softwood Species
por: Geana, Elisabeta-Irina, et al.
Publicado: (2023)