Cargando…
Temporal and spatial evolution of the distribution related to the number of COVID-19 pandemic
This work systematically conducts a data analysis based on the numbers of both cumulative and daily confirmed COVID-19 cases and deaths in a time span through April 2020 to June 2022 for over 200 countries around the world. Such research feature aims to reveal the temporal and spatial evolution of t...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier B.V.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9233890/ https://www.ncbi.nlm.nih.gov/pubmed/35783919 http://dx.doi.org/10.1016/j.physa.2022.127837 |
Sumario: | This work systematically conducts a data analysis based on the numbers of both cumulative and daily confirmed COVID-19 cases and deaths in a time span through April 2020 to June 2022 for over 200 countries around the world. Such research feature aims to reveal the temporal and spatial evolution of the country-level distribution observed in COVID-19 pandemic, and obtains some interesting results as follows. (1) The distributions of the numbers for cumulative confirmed cases and deaths obey power-law in early stages of COVID-19 and stretched exponential function in subsequent course. (2) The distributions of the numbers for daily confirmed cases and deaths obey power-law in early and late stages of COVID-19 and stretched exponential function in middle stages. The crossover region between power-law and stretched exponential behavior seems to depend on the evolution of “infection” event and “death” event. Such observation implies a kind of important symmetry related to the dynamics process of COVID-19 spreading. (3) The distributions of the normalized numbers for each metric show a temporal scaling behavior in 2-year period, and are well described by stretched exponential function. The observation of power-law and stretched exponential behavior in such country-level distributions suggests underlying intrinsic dynamics of a virus spreading process in human interconnected society. And thus it is important for understanding and mathematically modeling the COVID-19 pandemic. |
---|