Cargando…
Cerebro-cerebellar interactions in nonhuman primates examined by optogenetic functional magnetic resonance imaging
Functional magnetic resonance imaging (fMRI) is a promising approach for the simultaneous and extensive scanning of whole-brain activities. Optogenetics is free from electrical and magnetic artifacts and is an ideal stimulation method for combined use with fMRI. However, the application of optogenet...
Autores principales: | , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9233902/ https://www.ncbi.nlm.nih.gov/pubmed/35769971 http://dx.doi.org/10.1093/texcom/tgac022 |
_version_ | 1784735913921740800 |
---|---|
author | Goda, Naokazu Hasegawa, Taku Koketsu, Daisuke Chiken, Satomi Kikuta, Satomi Sano, Hiromi Kobayashi, Kenta Nambu, Atsushi Sadato, Norihiro Fukunaga, Masaki |
author_facet | Goda, Naokazu Hasegawa, Taku Koketsu, Daisuke Chiken, Satomi Kikuta, Satomi Sano, Hiromi Kobayashi, Kenta Nambu, Atsushi Sadato, Norihiro Fukunaga, Masaki |
author_sort | Goda, Naokazu |
collection | PubMed |
description | Functional magnetic resonance imaging (fMRI) is a promising approach for the simultaneous and extensive scanning of whole-brain activities. Optogenetics is free from electrical and magnetic artifacts and is an ideal stimulation method for combined use with fMRI. However, the application of optogenetics in nonhuman primates (NHPs) remains limited. Recently, we developed an efficient optogenetic intracortical microstimulation method of the primary motor cortex (M1), which successfully induced forelimb movements in macaque monkeys. Here, we aimed to investigate how optogenetic M1 stimulation causes neural modulation in the local and remote brain regions in anesthetized monkeys using 7-tesla fMRI. We demonstrated that optogenetic stimulation of the M1 forelimb and hindlimb regions successfully evoked robust direct and remote fMRI activities. Prominent remote activities were detected in the anterior and posterior lobes in the contralateral cerebellum, which receive projections polysynaptically from the M1. We further demonstrated that the cerebro-cerebellar projections from these M1 regions were topographically organized, which is concordant with the somatotopic map in the cerebellar cortex previously reported in macaques and humans. The present study significantly enhances optogenetic fMRI in NHPs, resulting in profound understanding of the brain network, thereby accelerating the translation of findings from animal models to humans. |
format | Online Article Text |
id | pubmed-9233902 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | Oxford University Press |
record_format | MEDLINE/PubMed |
spelling | pubmed-92339022022-06-28 Cerebro-cerebellar interactions in nonhuman primates examined by optogenetic functional magnetic resonance imaging Goda, Naokazu Hasegawa, Taku Koketsu, Daisuke Chiken, Satomi Kikuta, Satomi Sano, Hiromi Kobayashi, Kenta Nambu, Atsushi Sadato, Norihiro Fukunaga, Masaki Cereb Cortex Commun Original Article Functional magnetic resonance imaging (fMRI) is a promising approach for the simultaneous and extensive scanning of whole-brain activities. Optogenetics is free from electrical and magnetic artifacts and is an ideal stimulation method for combined use with fMRI. However, the application of optogenetics in nonhuman primates (NHPs) remains limited. Recently, we developed an efficient optogenetic intracortical microstimulation method of the primary motor cortex (M1), which successfully induced forelimb movements in macaque monkeys. Here, we aimed to investigate how optogenetic M1 stimulation causes neural modulation in the local and remote brain regions in anesthetized monkeys using 7-tesla fMRI. We demonstrated that optogenetic stimulation of the M1 forelimb and hindlimb regions successfully evoked robust direct and remote fMRI activities. Prominent remote activities were detected in the anterior and posterior lobes in the contralateral cerebellum, which receive projections polysynaptically from the M1. We further demonstrated that the cerebro-cerebellar projections from these M1 regions were topographically organized, which is concordant with the somatotopic map in the cerebellar cortex previously reported in macaques and humans. The present study significantly enhances optogenetic fMRI in NHPs, resulting in profound understanding of the brain network, thereby accelerating the translation of findings from animal models to humans. Oxford University Press 2022-05-25 /pmc/articles/PMC9233902/ /pubmed/35769971 http://dx.doi.org/10.1093/texcom/tgac022 Text en © The Author(s) 2022. Published by Oxford University Press. https://creativecommons.org/licenses/by/4.0/This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Original Article Goda, Naokazu Hasegawa, Taku Koketsu, Daisuke Chiken, Satomi Kikuta, Satomi Sano, Hiromi Kobayashi, Kenta Nambu, Atsushi Sadato, Norihiro Fukunaga, Masaki Cerebro-cerebellar interactions in nonhuman primates examined by optogenetic functional magnetic resonance imaging |
title | Cerebro-cerebellar interactions in nonhuman primates examined by optogenetic functional magnetic resonance imaging |
title_full | Cerebro-cerebellar interactions in nonhuman primates examined by optogenetic functional magnetic resonance imaging |
title_fullStr | Cerebro-cerebellar interactions in nonhuman primates examined by optogenetic functional magnetic resonance imaging |
title_full_unstemmed | Cerebro-cerebellar interactions in nonhuman primates examined by optogenetic functional magnetic resonance imaging |
title_short | Cerebro-cerebellar interactions in nonhuman primates examined by optogenetic functional magnetic resonance imaging |
title_sort | cerebro-cerebellar interactions in nonhuman primates examined by optogenetic functional magnetic resonance imaging |
topic | Original Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9233902/ https://www.ncbi.nlm.nih.gov/pubmed/35769971 http://dx.doi.org/10.1093/texcom/tgac022 |
work_keys_str_mv | AT godanaokazu cerebrocerebellarinteractionsinnonhumanprimatesexaminedbyoptogeneticfunctionalmagneticresonanceimaging AT hasegawataku cerebrocerebellarinteractionsinnonhumanprimatesexaminedbyoptogeneticfunctionalmagneticresonanceimaging AT koketsudaisuke cerebrocerebellarinteractionsinnonhumanprimatesexaminedbyoptogeneticfunctionalmagneticresonanceimaging AT chikensatomi cerebrocerebellarinteractionsinnonhumanprimatesexaminedbyoptogeneticfunctionalmagneticresonanceimaging AT kikutasatomi cerebrocerebellarinteractionsinnonhumanprimatesexaminedbyoptogeneticfunctionalmagneticresonanceimaging AT sanohiromi cerebrocerebellarinteractionsinnonhumanprimatesexaminedbyoptogeneticfunctionalmagneticresonanceimaging AT kobayashikenta cerebrocerebellarinteractionsinnonhumanprimatesexaminedbyoptogeneticfunctionalmagneticresonanceimaging AT nambuatsushi cerebrocerebellarinteractionsinnonhumanprimatesexaminedbyoptogeneticfunctionalmagneticresonanceimaging AT sadatonorihiro cerebrocerebellarinteractionsinnonhumanprimatesexaminedbyoptogeneticfunctionalmagneticresonanceimaging AT fukunagamasaki cerebrocerebellarinteractionsinnonhumanprimatesexaminedbyoptogeneticfunctionalmagneticresonanceimaging |