Cargando…
Patient specific deep learning based segmentation for magnetic resonance guided prostate radiotherapy
BACKGROUND AND PURPOSE: Treatments on combined Magnetic Resonance (MR) scanners and Linear Accelerators (Linacs) for radiotherapy, called MR-Linacs, often require daily contouring. Currently, deformable image registration (DIR) algorithms propagate contours from reference scans, however large shape...
Autores principales: | Fransson, Samuel, Tilly, David, Strand, Robin |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9234226/ https://www.ncbi.nlm.nih.gov/pubmed/35769110 http://dx.doi.org/10.1016/j.phro.2022.06.001 |
Ejemplares similares
-
Intrafractional motion models based on principal components in Magnetic Resonance guided prostate radiotherapy
por: Fransson, Samuel, et al.
Publicado: (2021) -
Prior knowledge based deep learning auto-segmentation in magnetic resonance imaging-guided radiotherapy of prostate cancer
por: Kawula, Maria, et al.
Publicado: (2023) -
Deep Learning-Based Methods for Prostate Segmentation in Magnetic Resonance Imaging
por: Comelli, Albert, et al.
Publicado: (2021) -
Deep learning-based auto-segmentation of targets and organs-at-risk for magnetic resonance imaging only planning of prostate radiotherapy
por: Elguindi, Sharif, et al.
Publicado: (2019) -
Oropharyngeal primary tumor segmentation for radiotherapy planning on magnetic resonance imaging using deep learning
por: Rodríguez Outeiral, Roque, et al.
Publicado: (2021)