Cargando…
Combined Channel Attention and Spatial Attention Module Network for Chinese Herbal Slices Automated Recognition
Chinese Herbal Slices (CHS) are critical components of Traditional Chinese Medicine (TCM); the accurate recognition of CHS is crucial for applying to medicine, production, and education. However, existing methods to recognize the CHS are mainly performed by experienced professionals, which may not m...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9234258/ https://www.ncbi.nlm.nih.gov/pubmed/35769703 http://dx.doi.org/10.3389/fnins.2022.920820 |
Sumario: | Chinese Herbal Slices (CHS) are critical components of Traditional Chinese Medicine (TCM); the accurate recognition of CHS is crucial for applying to medicine, production, and education. However, existing methods to recognize the CHS are mainly performed by experienced professionals, which may not meet vast CHS market demand due to time-consuming and the limited number of professionals. Although some automated CHS recognition approaches have been proposed, the performance still needs further improvement because they are primarily based on the traditional machine learning with hand-crafted features, resulting in relatively low accuracy. Additionally, few CHS datasets are available for research aimed at practical application. To comprehensively address these problems, we propose a combined channel attention and spatial attention module network (CCSM-Net) for efficiently recognizing CHS with 2-D images. The CCSM-Net integrates channel and spatial attentions, focusing on the most important information as well as the position of the information of CHS image. Especially, pairs of max-pooling and average pooling operations are used in the CA and SA module to aggregate the channel information of the feature map. Then, a dataset of 14,196 images with 182 categories of commonly used CHS is constructed. We evaluated our framework on the constructed dataset. Experimental results show that the proposed CCSM-Net indicates promising performance and outperforms other typical deep learning algorithms, achieving a recognition rate of 99.27%, a precision of 99.33%, a recall of 99.27%, and an F1-score of 99.26% with different numbers of CHS categories. |
---|