Cargando…
Mitochondrial metabolism and bioenergetic function in an anoxic isolated adult mouse cardiomyocyte model of in vivo cardiac ischemia-reperfusion injury
Cell models of cardiac ischemia-reperfusion (IR) injury are essential to facilitate understanding, but current monolayer cell models poorly replicate the in vivo IR injury that occurs within a three-dimensional tissue. Here we show that this is for two reasons: the residual oxygen present in many ce...
Autores principales: | , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9234472/ https://www.ncbi.nlm.nih.gov/pubmed/35749842 http://dx.doi.org/10.1016/j.redox.2022.102368 |
_version_ | 1784736083609649152 |
---|---|
author | Gruszczyk, Anja V. Casey, Alva M. James, Andrew M. Prag, Hiran A. Burger, Nils Bates, Georgina R. Hall, Andrew R. Allen, Fay M. Krieg, Thomas Saeb-Parsy, Kourosh Murphy, Michael P. |
author_facet | Gruszczyk, Anja V. Casey, Alva M. James, Andrew M. Prag, Hiran A. Burger, Nils Bates, Georgina R. Hall, Andrew R. Allen, Fay M. Krieg, Thomas Saeb-Parsy, Kourosh Murphy, Michael P. |
author_sort | Gruszczyk, Anja V. |
collection | PubMed |
description | Cell models of cardiac ischemia-reperfusion (IR) injury are essential to facilitate understanding, but current monolayer cell models poorly replicate the in vivo IR injury that occurs within a three-dimensional tissue. Here we show that this is for two reasons: the residual oxygen present in many cellular hypoxia models sustains mitochondrial oxidative phosphorylation; and the loss of lactate from cells into the incubation medium during ischemia enables cells to sustain glycolysis. To overcome these limitations, we incubated isolated adult mouse cardiomyocytes anoxically while inhibiting lactate efflux. These interventions recapitulated key markers of in vivo ischemia, notably the accumulation of succinate and the loss of adenine nucleotides. Upon reoxygenation after anoxia the succinate that had accumulated during anoxia was rapidly oxidized in association with extensive mitochondrial superoxide/hydrogen peroxide production and cell injury, mimicking reperfusion injury. This cell model will enable key aspects of cardiac IR injury to be assessed in vitro. |
format | Online Article Text |
id | pubmed-9234472 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | Elsevier |
record_format | MEDLINE/PubMed |
spelling | pubmed-92344722022-06-28 Mitochondrial metabolism and bioenergetic function in an anoxic isolated adult mouse cardiomyocyte model of in vivo cardiac ischemia-reperfusion injury Gruszczyk, Anja V. Casey, Alva M. James, Andrew M. Prag, Hiran A. Burger, Nils Bates, Georgina R. Hall, Andrew R. Allen, Fay M. Krieg, Thomas Saeb-Parsy, Kourosh Murphy, Michael P. Redox Biol Research Paper Cell models of cardiac ischemia-reperfusion (IR) injury are essential to facilitate understanding, but current monolayer cell models poorly replicate the in vivo IR injury that occurs within a three-dimensional tissue. Here we show that this is for two reasons: the residual oxygen present in many cellular hypoxia models sustains mitochondrial oxidative phosphorylation; and the loss of lactate from cells into the incubation medium during ischemia enables cells to sustain glycolysis. To overcome these limitations, we incubated isolated adult mouse cardiomyocytes anoxically while inhibiting lactate efflux. These interventions recapitulated key markers of in vivo ischemia, notably the accumulation of succinate and the loss of adenine nucleotides. Upon reoxygenation after anoxia the succinate that had accumulated during anoxia was rapidly oxidized in association with extensive mitochondrial superoxide/hydrogen peroxide production and cell injury, mimicking reperfusion injury. This cell model will enable key aspects of cardiac IR injury to be assessed in vitro. Elsevier 2022-06-17 /pmc/articles/PMC9234472/ /pubmed/35749842 http://dx.doi.org/10.1016/j.redox.2022.102368 Text en © 2022 The Authors https://creativecommons.org/licenses/by/4.0/This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Research Paper Gruszczyk, Anja V. Casey, Alva M. James, Andrew M. Prag, Hiran A. Burger, Nils Bates, Georgina R. Hall, Andrew R. Allen, Fay M. Krieg, Thomas Saeb-Parsy, Kourosh Murphy, Michael P. Mitochondrial metabolism and bioenergetic function in an anoxic isolated adult mouse cardiomyocyte model of in vivo cardiac ischemia-reperfusion injury |
title | Mitochondrial metabolism and bioenergetic function in an anoxic isolated adult mouse cardiomyocyte model of in vivo cardiac ischemia-reperfusion injury |
title_full | Mitochondrial metabolism and bioenergetic function in an anoxic isolated adult mouse cardiomyocyte model of in vivo cardiac ischemia-reperfusion injury |
title_fullStr | Mitochondrial metabolism and bioenergetic function in an anoxic isolated adult mouse cardiomyocyte model of in vivo cardiac ischemia-reperfusion injury |
title_full_unstemmed | Mitochondrial metabolism and bioenergetic function in an anoxic isolated adult mouse cardiomyocyte model of in vivo cardiac ischemia-reperfusion injury |
title_short | Mitochondrial metabolism and bioenergetic function in an anoxic isolated adult mouse cardiomyocyte model of in vivo cardiac ischemia-reperfusion injury |
title_sort | mitochondrial metabolism and bioenergetic function in an anoxic isolated adult mouse cardiomyocyte model of in vivo cardiac ischemia-reperfusion injury |
topic | Research Paper |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9234472/ https://www.ncbi.nlm.nih.gov/pubmed/35749842 http://dx.doi.org/10.1016/j.redox.2022.102368 |
work_keys_str_mv | AT gruszczykanjav mitochondrialmetabolismandbioenergeticfunctioninananoxicisolatedadultmousecardiomyocytemodelofinvivocardiacischemiareperfusioninjury AT caseyalvam mitochondrialmetabolismandbioenergeticfunctioninananoxicisolatedadultmousecardiomyocytemodelofinvivocardiacischemiareperfusioninjury AT jamesandrewm mitochondrialmetabolismandbioenergeticfunctioninananoxicisolatedadultmousecardiomyocytemodelofinvivocardiacischemiareperfusioninjury AT praghirana mitochondrialmetabolismandbioenergeticfunctioninananoxicisolatedadultmousecardiomyocytemodelofinvivocardiacischemiareperfusioninjury AT burgernils mitochondrialmetabolismandbioenergeticfunctioninananoxicisolatedadultmousecardiomyocytemodelofinvivocardiacischemiareperfusioninjury AT batesgeorginar mitochondrialmetabolismandbioenergeticfunctioninananoxicisolatedadultmousecardiomyocytemodelofinvivocardiacischemiareperfusioninjury AT hallandrewr mitochondrialmetabolismandbioenergeticfunctioninananoxicisolatedadultmousecardiomyocytemodelofinvivocardiacischemiareperfusioninjury AT allenfaym mitochondrialmetabolismandbioenergeticfunctioninananoxicisolatedadultmousecardiomyocytemodelofinvivocardiacischemiareperfusioninjury AT kriegthomas mitochondrialmetabolismandbioenergeticfunctioninananoxicisolatedadultmousecardiomyocytemodelofinvivocardiacischemiareperfusioninjury AT saebparsykourosh mitochondrialmetabolismandbioenergeticfunctioninananoxicisolatedadultmousecardiomyocytemodelofinvivocardiacischemiareperfusioninjury AT murphymichaelp mitochondrialmetabolismandbioenergeticfunctioninananoxicisolatedadultmousecardiomyocytemodelofinvivocardiacischemiareperfusioninjury |