Cargando…

Mitochondrial metabolism and bioenergetic function in an anoxic isolated adult mouse cardiomyocyte model of in vivo cardiac ischemia-reperfusion injury

Cell models of cardiac ischemia-reperfusion (IR) injury are essential to facilitate understanding, but current monolayer cell models poorly replicate the in vivo IR injury that occurs within a three-dimensional tissue. Here we show that this is for two reasons: the residual oxygen present in many ce...

Descripción completa

Detalles Bibliográficos
Autores principales: Gruszczyk, Anja V., Casey, Alva M., James, Andrew M., Prag, Hiran A., Burger, Nils, Bates, Georgina R., Hall, Andrew R., Allen, Fay M., Krieg, Thomas, Saeb-Parsy, Kourosh, Murphy, Michael P.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9234472/
https://www.ncbi.nlm.nih.gov/pubmed/35749842
http://dx.doi.org/10.1016/j.redox.2022.102368
_version_ 1784736083609649152
author Gruszczyk, Anja V.
Casey, Alva M.
James, Andrew M.
Prag, Hiran A.
Burger, Nils
Bates, Georgina R.
Hall, Andrew R.
Allen, Fay M.
Krieg, Thomas
Saeb-Parsy, Kourosh
Murphy, Michael P.
author_facet Gruszczyk, Anja V.
Casey, Alva M.
James, Andrew M.
Prag, Hiran A.
Burger, Nils
Bates, Georgina R.
Hall, Andrew R.
Allen, Fay M.
Krieg, Thomas
Saeb-Parsy, Kourosh
Murphy, Michael P.
author_sort Gruszczyk, Anja V.
collection PubMed
description Cell models of cardiac ischemia-reperfusion (IR) injury are essential to facilitate understanding, but current monolayer cell models poorly replicate the in vivo IR injury that occurs within a three-dimensional tissue. Here we show that this is for two reasons: the residual oxygen present in many cellular hypoxia models sustains mitochondrial oxidative phosphorylation; and the loss of lactate from cells into the incubation medium during ischemia enables cells to sustain glycolysis. To overcome these limitations, we incubated isolated adult mouse cardiomyocytes anoxically while inhibiting lactate efflux. These interventions recapitulated key markers of in vivo ischemia, notably the accumulation of succinate and the loss of adenine nucleotides. Upon reoxygenation after anoxia the succinate that had accumulated during anoxia was rapidly oxidized in association with extensive mitochondrial superoxide/hydrogen peroxide production and cell injury, mimicking reperfusion injury. This cell model will enable key aspects of cardiac IR injury to be assessed in vitro.
format Online
Article
Text
id pubmed-9234472
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher Elsevier
record_format MEDLINE/PubMed
spelling pubmed-92344722022-06-28 Mitochondrial metabolism and bioenergetic function in an anoxic isolated adult mouse cardiomyocyte model of in vivo cardiac ischemia-reperfusion injury Gruszczyk, Anja V. Casey, Alva M. James, Andrew M. Prag, Hiran A. Burger, Nils Bates, Georgina R. Hall, Andrew R. Allen, Fay M. Krieg, Thomas Saeb-Parsy, Kourosh Murphy, Michael P. Redox Biol Research Paper Cell models of cardiac ischemia-reperfusion (IR) injury are essential to facilitate understanding, but current monolayer cell models poorly replicate the in vivo IR injury that occurs within a three-dimensional tissue. Here we show that this is for two reasons: the residual oxygen present in many cellular hypoxia models sustains mitochondrial oxidative phosphorylation; and the loss of lactate from cells into the incubation medium during ischemia enables cells to sustain glycolysis. To overcome these limitations, we incubated isolated adult mouse cardiomyocytes anoxically while inhibiting lactate efflux. These interventions recapitulated key markers of in vivo ischemia, notably the accumulation of succinate and the loss of adenine nucleotides. Upon reoxygenation after anoxia the succinate that had accumulated during anoxia was rapidly oxidized in association with extensive mitochondrial superoxide/hydrogen peroxide production and cell injury, mimicking reperfusion injury. This cell model will enable key aspects of cardiac IR injury to be assessed in vitro. Elsevier 2022-06-17 /pmc/articles/PMC9234472/ /pubmed/35749842 http://dx.doi.org/10.1016/j.redox.2022.102368 Text en © 2022 The Authors https://creativecommons.org/licenses/by/4.0/This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
spellingShingle Research Paper
Gruszczyk, Anja V.
Casey, Alva M.
James, Andrew M.
Prag, Hiran A.
Burger, Nils
Bates, Georgina R.
Hall, Andrew R.
Allen, Fay M.
Krieg, Thomas
Saeb-Parsy, Kourosh
Murphy, Michael P.
Mitochondrial metabolism and bioenergetic function in an anoxic isolated adult mouse cardiomyocyte model of in vivo cardiac ischemia-reperfusion injury
title Mitochondrial metabolism and bioenergetic function in an anoxic isolated adult mouse cardiomyocyte model of in vivo cardiac ischemia-reperfusion injury
title_full Mitochondrial metabolism and bioenergetic function in an anoxic isolated adult mouse cardiomyocyte model of in vivo cardiac ischemia-reperfusion injury
title_fullStr Mitochondrial metabolism and bioenergetic function in an anoxic isolated adult mouse cardiomyocyte model of in vivo cardiac ischemia-reperfusion injury
title_full_unstemmed Mitochondrial metabolism and bioenergetic function in an anoxic isolated adult mouse cardiomyocyte model of in vivo cardiac ischemia-reperfusion injury
title_short Mitochondrial metabolism and bioenergetic function in an anoxic isolated adult mouse cardiomyocyte model of in vivo cardiac ischemia-reperfusion injury
title_sort mitochondrial metabolism and bioenergetic function in an anoxic isolated adult mouse cardiomyocyte model of in vivo cardiac ischemia-reperfusion injury
topic Research Paper
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9234472/
https://www.ncbi.nlm.nih.gov/pubmed/35749842
http://dx.doi.org/10.1016/j.redox.2022.102368
work_keys_str_mv AT gruszczykanjav mitochondrialmetabolismandbioenergeticfunctioninananoxicisolatedadultmousecardiomyocytemodelofinvivocardiacischemiareperfusioninjury
AT caseyalvam mitochondrialmetabolismandbioenergeticfunctioninananoxicisolatedadultmousecardiomyocytemodelofinvivocardiacischemiareperfusioninjury
AT jamesandrewm mitochondrialmetabolismandbioenergeticfunctioninananoxicisolatedadultmousecardiomyocytemodelofinvivocardiacischemiareperfusioninjury
AT praghirana mitochondrialmetabolismandbioenergeticfunctioninananoxicisolatedadultmousecardiomyocytemodelofinvivocardiacischemiareperfusioninjury
AT burgernils mitochondrialmetabolismandbioenergeticfunctioninananoxicisolatedadultmousecardiomyocytemodelofinvivocardiacischemiareperfusioninjury
AT batesgeorginar mitochondrialmetabolismandbioenergeticfunctioninananoxicisolatedadultmousecardiomyocytemodelofinvivocardiacischemiareperfusioninjury
AT hallandrewr mitochondrialmetabolismandbioenergeticfunctioninananoxicisolatedadultmousecardiomyocytemodelofinvivocardiacischemiareperfusioninjury
AT allenfaym mitochondrialmetabolismandbioenergeticfunctioninananoxicisolatedadultmousecardiomyocytemodelofinvivocardiacischemiareperfusioninjury
AT kriegthomas mitochondrialmetabolismandbioenergeticfunctioninananoxicisolatedadultmousecardiomyocytemodelofinvivocardiacischemiareperfusioninjury
AT saebparsykourosh mitochondrialmetabolismandbioenergeticfunctioninananoxicisolatedadultmousecardiomyocytemodelofinvivocardiacischemiareperfusioninjury
AT murphymichaelp mitochondrialmetabolismandbioenergeticfunctioninananoxicisolatedadultmousecardiomyocytemodelofinvivocardiacischemiareperfusioninjury