Cargando…
Radiomics and deep learning for myocardial scar screening in hypertrophic cardiomyopathy
BACKGROUND: Myocardial scar burden quantified using late gadolinium enhancement (LGE) cardiovascular magnetic resonance (CMR), has important prognostic value in hypertrophic cardiomyopathy (HCM). However, nearly 50% of HCM patients have no scar but undergo repeated gadolinium-based CMR over their li...
Autores principales: | Fahmy, Ahmed S., Rowin, Ethan J., Arafati, Arghavan, Al-Otaibi, Talal, Maron, Martin S., Nezafat, Reza |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9235098/ https://www.ncbi.nlm.nih.gov/pubmed/35761339 http://dx.doi.org/10.1186/s12968-022-00869-x |
Ejemplares similares
-
Machine Learning for Predicting Heart Failure Progression in Hypertrophic Cardiomyopathy
por: Fahmy, Ahmed S., et al.
Publicado: (2021) -
Improved Quantification of Myocardium Scar in Late Gadolinium Enhancement Images: Deep Learning Based Image Fusion Approach
por: Fahmy, Ahmed S., et al.
Publicado: (2021) -
The necessity for full ventricular coverage with noncontrast T1 mapping in hypertrophic cardiomyopathy
por: Rowin, Ethan, et al.
Publicado: (2013) -
Differing strategies for sudden death prevention in hypertrophic cardiomyopathy
por: Maron, Martin S, et al.
Publicado: (2023) -
Winter Is Coming: The Slippery Slope of Defining Disease and the Implications for Hypertrophic Cardiomyopathy
por: Rowin, Ethan J., et al.
Publicado: (2022)