Cargando…
A machine-learning model to predict postoperative delirium following knee arthroplasty using electronic health records
BACKGROUND: Postoperative delirium is a challenging complication due to its adverse outcome such as long hospital stay. The aims of this study were: 1) to identify preoperative risk factors of postoperative delirium following knee arthroplasty, and 2) to develop a machine-learning prediction model....
Autores principales: | Jung, Jong Wook, Hwang, Sunghyun, Ko, Sunho, Jo, Changwung, Park, Hye Youn, Han, Hyuk-Soo, Lee, Myung Chul, Park, Jee Eun, Ro, Du Hyun |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9235137/ https://www.ncbi.nlm.nih.gov/pubmed/35761274 http://dx.doi.org/10.1186/s12888-022-04067-y |
Ejemplares similares
-
Total Knee Arthroplasty: Is It Safe? A Single-Center Study of 4,124 Patients in South Korea
por: Ko, Kyunga, et al.
Publicado: (2023) -
Automated Risk Stratification of Hip Osteoarthritis Development in Patients With Femoroacetabular Impingement Using an Unsupervised Clustering Algorithm: A Study From the Rochester Epidemiology Project
por: Ko, Sunho, et al.
Publicado: (2021) -
Automated Detection of Surgical Implants on Plain Knee Radiographs Using a Deep Learning Algorithm
por: Kim, Back, et al.
Publicado: (2022) -
Low muscle mass is an independent risk factor for postoperative blood transfusion in total knee arthroplasty: a retrospective, propensity score-matched cohort study
por: Hwang, Doohyun, et al.
Publicado: (2022) -
Anterior dislocation of a total knee arthroplasty in a patient with postoperative delirium: a case report
por: Kim, Jin‐Hong, et al.
Publicado: (2021)