Cargando…
dsSynthetic: synthetic data generation for the DataSHIELD federated analysis system
OBJECTIVE: Platforms such as DataSHIELD allow users to analyse sensitive data remotely, without having full access to the detailed data items (federated analysis). While this feature helps to overcome difficulties with data sharing, it can make it challenging to write code without full visibility of...
Autores principales: | Banerjee, Soumya, Bishop, Tom R. P. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9235208/ https://www.ncbi.nlm.nih.gov/pubmed/35761417 http://dx.doi.org/10.1186/s13104-022-06111-2 |
Ejemplares similares
-
dsSurvival 2.0: privacy enhancing survival curves for survival models in the federated DataSHIELD analysis system
por: Banerjee, Soumya, et al.
Publicado: (2023) -
dsSurvival: Privacy preserving survival models for federated individual patient meta-analysis in DataSHIELD
por: Banerjee, Soumya, et al.
Publicado: (2022) -
Deep generative models in DataSHIELD
por: Lenz, Stefan, et al.
Publicado: (2021) -
DataSHIELD: taking the analysis to the data, not the data to the analysis
por: Gaye, Amadou, et al.
Publicado: (2014) -
Privacy protected text analysis in DataSHIELD
por: Wilson, Rebecca, et al.
Publicado: (2017)