Cargando…
Polyphosphate application influences morpho-physiological root traits involved in P acquisition and durum wheat growth performance
BACKGROUND: Among phosphate (P) fertilizers, polyphosphates (PolyPs) have shown promising results in terms of crop yield and plant P nutrition. However, compared to conventional P inputs, very little is known on the impact of PolyPs fertilizers on below- and above-ground plant functional traits invo...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9235221/ https://www.ncbi.nlm.nih.gov/pubmed/35754019 http://dx.doi.org/10.1186/s12870-022-03683-w |
_version_ | 1784736266393223168 |
---|---|
author | Khourchi, Said Oukarroum, Abdallah Tika, Asma Delaplace, Pierre Bargaz, Adnane |
author_facet | Khourchi, Said Oukarroum, Abdallah Tika, Asma Delaplace, Pierre Bargaz, Adnane |
author_sort | Khourchi, Said |
collection | PubMed |
description | BACKGROUND: Among phosphate (P) fertilizers, polyphosphates (PolyPs) have shown promising results in terms of crop yield and plant P nutrition. However, compared to conventional P inputs, very little is known on the impact of PolyPs fertilizers on below- and above-ground plant functional traits involved in P acquisition. This study aims to evaluate agro-physiological responses of durum wheat variety ´Karim´ under different PolyPs applications. Three PolyPs fertilizers (PolyA, PolyB, and PolyC) versus one orthophosphate (OrthoP) were applied at three doses; 30 (D30), 60 (D60), and 90 (D90) kg P/ha under controlled conditions. The PolyPs (especially PolyB and PolyC) application at D60 significantly increased morphophysiological root traits (e.g., RL: 42 and 130%; RSA:40 and 60%), shoot inorganic P (Pi) content (159 and 88%), and root P acquisition efficiency (471 and 296%) under PolyB and PolyC, respectively compared to unfertilized plants. Above-ground physiological parameters, mainly nutrient acquisition, chlorophyll content and chlorophyll fluorescence parameters were also improved under PolyB and PolyA application at D60. A significant and positive correlation between shoot Pi content and rhizosphere soil acid phosphatase activity was observed, which reveal the key role of these enzymes in PolyPs (A and B) use efficiency. Furthermore, increased P uptake/RL ratio along with shoot Pi indicates more efficient P allocation to shoots with less investment in root biomass production under PolyPs (especially A and B). CONCLUSIONS: Under our experimental conditions, these findings report positive impacts of PolyPs on wheat growth performance, particularly on photosynthesis and nutrient acquisition at D60, along with modulation of root morpho-physiological traits likely responsible of P acquisition efficiency. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1186/s12870-022-03683-w. |
format | Online Article Text |
id | pubmed-9235221 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | BioMed Central |
record_format | MEDLINE/PubMed |
spelling | pubmed-92352212022-06-28 Polyphosphate application influences morpho-physiological root traits involved in P acquisition and durum wheat growth performance Khourchi, Said Oukarroum, Abdallah Tika, Asma Delaplace, Pierre Bargaz, Adnane BMC Plant Biol Research BACKGROUND: Among phosphate (P) fertilizers, polyphosphates (PolyPs) have shown promising results in terms of crop yield and plant P nutrition. However, compared to conventional P inputs, very little is known on the impact of PolyPs fertilizers on below- and above-ground plant functional traits involved in P acquisition. This study aims to evaluate agro-physiological responses of durum wheat variety ´Karim´ under different PolyPs applications. Three PolyPs fertilizers (PolyA, PolyB, and PolyC) versus one orthophosphate (OrthoP) were applied at three doses; 30 (D30), 60 (D60), and 90 (D90) kg P/ha under controlled conditions. The PolyPs (especially PolyB and PolyC) application at D60 significantly increased morphophysiological root traits (e.g., RL: 42 and 130%; RSA:40 and 60%), shoot inorganic P (Pi) content (159 and 88%), and root P acquisition efficiency (471 and 296%) under PolyB and PolyC, respectively compared to unfertilized plants. Above-ground physiological parameters, mainly nutrient acquisition, chlorophyll content and chlorophyll fluorescence parameters were also improved under PolyB and PolyA application at D60. A significant and positive correlation between shoot Pi content and rhizosphere soil acid phosphatase activity was observed, which reveal the key role of these enzymes in PolyPs (A and B) use efficiency. Furthermore, increased P uptake/RL ratio along with shoot Pi indicates more efficient P allocation to shoots with less investment in root biomass production under PolyPs (especially A and B). CONCLUSIONS: Under our experimental conditions, these findings report positive impacts of PolyPs on wheat growth performance, particularly on photosynthesis and nutrient acquisition at D60, along with modulation of root morpho-physiological traits likely responsible of P acquisition efficiency. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1186/s12870-022-03683-w. BioMed Central 2022-06-27 /pmc/articles/PMC9235221/ /pubmed/35754019 http://dx.doi.org/10.1186/s12870-022-03683-w Text en © The Author(s) 2022 https://creativecommons.org/licenses/by/4.0/Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) . The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/ (https://creativecommons.org/publicdomain/zero/1.0/) ) applies to the data made available in this article, unless otherwise stated in a credit line to the data. |
spellingShingle | Research Khourchi, Said Oukarroum, Abdallah Tika, Asma Delaplace, Pierre Bargaz, Adnane Polyphosphate application influences morpho-physiological root traits involved in P acquisition and durum wheat growth performance |
title | Polyphosphate application influences morpho-physiological root traits involved in P acquisition and durum wheat growth performance |
title_full | Polyphosphate application influences morpho-physiological root traits involved in P acquisition and durum wheat growth performance |
title_fullStr | Polyphosphate application influences morpho-physiological root traits involved in P acquisition and durum wheat growth performance |
title_full_unstemmed | Polyphosphate application influences morpho-physiological root traits involved in P acquisition and durum wheat growth performance |
title_short | Polyphosphate application influences morpho-physiological root traits involved in P acquisition and durum wheat growth performance |
title_sort | polyphosphate application influences morpho-physiological root traits involved in p acquisition and durum wheat growth performance |
topic | Research |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9235221/ https://www.ncbi.nlm.nih.gov/pubmed/35754019 http://dx.doi.org/10.1186/s12870-022-03683-w |
work_keys_str_mv | AT khourchisaid polyphosphateapplicationinfluencesmorphophysiologicalroottraitsinvolvedinpacquisitionanddurumwheatgrowthperformance AT oukarroumabdallah polyphosphateapplicationinfluencesmorphophysiologicalroottraitsinvolvedinpacquisitionanddurumwheatgrowthperformance AT tikaasma polyphosphateapplicationinfluencesmorphophysiologicalroottraitsinvolvedinpacquisitionanddurumwheatgrowthperformance AT delaplacepierre polyphosphateapplicationinfluencesmorphophysiologicalroottraitsinvolvedinpacquisitionanddurumwheatgrowthperformance AT bargazadnane polyphosphateapplicationinfluencesmorphophysiologicalroottraitsinvolvedinpacquisitionanddurumwheatgrowthperformance |