Cargando…
A hybrid method based on semi-supervised learning for relation extraction in Chinese EMRs
BACKGROUND: Building a large-scale medical knowledge graphs needs to automatically extract the relations between entities from electronic medical records (EMRs) . The main challenges are the scarcity of available labeled corpus and the identification of complexity semantic relations in text of Chine...
Autores principales: | Yang, Chunming, Xiao, Dan, Luo, Yuanyuan, Li, Bo, Zhao, Xujian, Zhang, Hui |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9235238/ https://www.ncbi.nlm.nih.gov/pubmed/35761319 http://dx.doi.org/10.1186/s12911-022-01908-4 |
Ejemplares similares
-
Active Semi-Supervised Learning Method with Hybrid Deep Belief Networks
por: Zhou, Shusen, et al.
Publicado: (2014) -
Semi-supervised method for biomedical event extraction
por: Wang, Jian, et al.
Publicado: (2013) -
Attention-based deep residual learning network for entity relation extraction in Chinese EMRs
por: Zhang, Zhichang, et al.
Publicado: (2019) -
Semi-Supervised Active Learning for Sound Classification in Hybrid Learning Environments
por: Han, Wenjing, et al.
Publicado: (2016) -
Semi-supervised learning /
Publicado: (2010)