Cargando…
Explainable multi-instance and multi-task learning for COVID-19 diagnosis and lesion segmentation in CT images()
Coronavirus Disease 2019 (COVID-19) still presents a pandemic trend globally. Detecting infected individuals and analyzing their status can provide patients with proper healthcare while protecting the normal population. Chest CT (computed tomography) is an effective tool for screening of COVID-19. I...
Autores principales: | Li, Minglei, Li, Xiang, Jiang, Yuchen, Zhang, Jiusi, Luo, Hao, Yin, Shen |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier B.V.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9235304/ https://www.ncbi.nlm.nih.gov/pubmed/35783000 http://dx.doi.org/10.1016/j.knosys.2022.109278 |
Ejemplares similares
-
Multi-Objective Evolutionary Instance Selection for Regression Tasks
por: Kordos, Mirosław, et al.
Publicado: (2018) -
Mask then classify: multi-instance segmentation for surgical instruments
por: Kurmann, Thomas, et al.
Publicado: (2021) -
Uncertainty Ordinal Multi-Instance Learning for Breast Cancer Diagnosis
por: Xu, Xinzheng, et al.
Publicado: (2022) -
Diagnosis of Esophageal Lesions by Multi-Classification and Segmentation Using an Improved Multi-Task Deep Learning Model
por: Tang, Suigu, et al.
Publicado: (2022) -
Explainable multi-task learning for multi-modality biological data analysis
por: Tang, Xin, et al.
Publicado: (2023)