Cargando…
Syotti: scalable bait design for DNA enrichment
MOTIVATION: Bait enrichment is a protocol that is becoming increasingly ubiquitous as it has been shown to successfully amplify regions of interest in metagenomic samples. In this method, a set of synthetic probes (‘baits’) are designed, manufactured and applied to fragmented metagenomic DNA. The pr...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9235489/ https://www.ncbi.nlm.nih.gov/pubmed/35758776 http://dx.doi.org/10.1093/bioinformatics/btac226 |
_version_ | 1784736322070511616 |
---|---|
author | Alanko, Jarno N Slizovskiy, Ilya B Lokshtanov, Daniel Gagie, Travis Noyes, Noelle R Boucher, Christina |
author_facet | Alanko, Jarno N Slizovskiy, Ilya B Lokshtanov, Daniel Gagie, Travis Noyes, Noelle R Boucher, Christina |
author_sort | Alanko, Jarno N |
collection | PubMed |
description | MOTIVATION: Bait enrichment is a protocol that is becoming increasingly ubiquitous as it has been shown to successfully amplify regions of interest in metagenomic samples. In this method, a set of synthetic probes (‘baits’) are designed, manufactured and applied to fragmented metagenomic DNA. The probes bind to the fragmented DNA and any unbound DNA is rinsed away, leaving the bound fragments to be amplified for sequencing. Metsky et al. demonstrated that bait-enrichment is capable of detecting a large number of human viral pathogens within metagenomic samples. RESULTS: We formalize the problem of designing baits by defining the Minimum Bait Cover problem, show that the problem is NP-hard even under very restrictive assumptions, and design an efficient heuristic that takes advantage of succinct data structures. We refer to our method as Syotti. The running time of Syotti shows linear scaling in practice, running at least an order of magnitude faster than state-of-the-art methods, including the method of Metsky et al. At the same time, our method produces bait sets that are smaller than the ones produced by the competing methods, while also leaving fewer positions uncovered. Lastly, we show that Syotti requires only 25 min to design baits for a dataset comprised of 3 billion nucleotides from 1000 related bacterial substrains, whereas the method of Metsky et al. shows clearly super-linear running time and fails to process even a subset of 17% of the data in 72 h. AVAILABILITY AND IMPLEMENTATION: https://github.com/jnalanko/syotti. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online. |
format | Online Article Text |
id | pubmed-9235489 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | Oxford University Press |
record_format | MEDLINE/PubMed |
spelling | pubmed-92354892022-06-29 Syotti: scalable bait design for DNA enrichment Alanko, Jarno N Slizovskiy, Ilya B Lokshtanov, Daniel Gagie, Travis Noyes, Noelle R Boucher, Christina Bioinformatics ISCB/Ismb 2022 MOTIVATION: Bait enrichment is a protocol that is becoming increasingly ubiquitous as it has been shown to successfully amplify regions of interest in metagenomic samples. In this method, a set of synthetic probes (‘baits’) are designed, manufactured and applied to fragmented metagenomic DNA. The probes bind to the fragmented DNA and any unbound DNA is rinsed away, leaving the bound fragments to be amplified for sequencing. Metsky et al. demonstrated that bait-enrichment is capable of detecting a large number of human viral pathogens within metagenomic samples. RESULTS: We formalize the problem of designing baits by defining the Minimum Bait Cover problem, show that the problem is NP-hard even under very restrictive assumptions, and design an efficient heuristic that takes advantage of succinct data structures. We refer to our method as Syotti. The running time of Syotti shows linear scaling in practice, running at least an order of magnitude faster than state-of-the-art methods, including the method of Metsky et al. At the same time, our method produces bait sets that are smaller than the ones produced by the competing methods, while also leaving fewer positions uncovered. Lastly, we show that Syotti requires only 25 min to design baits for a dataset comprised of 3 billion nucleotides from 1000 related bacterial substrains, whereas the method of Metsky et al. shows clearly super-linear running time and fails to process even a subset of 17% of the data in 72 h. AVAILABILITY AND IMPLEMENTATION: https://github.com/jnalanko/syotti. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online. Oxford University Press 2022-06-27 /pmc/articles/PMC9235489/ /pubmed/35758776 http://dx.doi.org/10.1093/bioinformatics/btac226 Text en © The Author(s) 2022. Published by Oxford University Press. https://creativecommons.org/licenses/by/4.0/This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | ISCB/Ismb 2022 Alanko, Jarno N Slizovskiy, Ilya B Lokshtanov, Daniel Gagie, Travis Noyes, Noelle R Boucher, Christina Syotti: scalable bait design for DNA enrichment |
title | Syotti: scalable bait design for DNA enrichment |
title_full | Syotti: scalable bait design for DNA enrichment |
title_fullStr | Syotti: scalable bait design for DNA enrichment |
title_full_unstemmed | Syotti: scalable bait design for DNA enrichment |
title_short | Syotti: scalable bait design for DNA enrichment |
title_sort | syotti: scalable bait design for dna enrichment |
topic | ISCB/Ismb 2022 |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9235489/ https://www.ncbi.nlm.nih.gov/pubmed/35758776 http://dx.doi.org/10.1093/bioinformatics/btac226 |
work_keys_str_mv | AT alankojarnon syottiscalablebaitdesignfordnaenrichment AT slizovskiyilyab syottiscalablebaitdesignfordnaenrichment AT lokshtanovdaniel syottiscalablebaitdesignfordnaenrichment AT gagietravis syottiscalablebaitdesignfordnaenrichment AT noyesnoeller syottiscalablebaitdesignfordnaenrichment AT boucherchristina syottiscalablebaitdesignfordnaenrichment |