Cargando…
Self-supervised learning of cell type specificity from immunohistochemical images
MOTIVATION: Advances in bioimaging now permit in situ proteomic characterization of cell–cell interactions in complex tissues, with important applications across a spectrum of biological problems from development to disease. These methods depend on selection of antibodies targeting proteins that are...
Autores principales: | Murphy, Michael, Jegelka, Stefanie, Fraenkel, Ernest |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9235491/ https://www.ncbi.nlm.nih.gov/pubmed/35758799 http://dx.doi.org/10.1093/bioinformatics/btac263 |
Ejemplares similares
-
psupertime: supervised pseudotime analysis for time-series single-cell RNA-seq data
por: Macnair, Will, et al.
Publicado: (2022) -
SPARSE: a sparse hypergraph neural network for learning multiple types of latent combinations to accurately predict drug–drug interactions
por: Nguyen, Duc Anh, et al.
Publicado: (2022) -
Deep kernel learning improves molecular fingerprint prediction from tandem mass spectra
por: Dührkop, Kai
Publicado: (2022) -
DeepGOZero: improving protein function prediction from sequence and zero-shot learning based on ontology axioms
por: Kulmanov, Maxat, et al.
Publicado: (2022) -
An approachable, flexible and practical machine learning workshop for biologists
por: Magnano, Chris S, et al.
Publicado: (2022)