Cargando…
BITES: balanced individual treatment effect for survival data
MOTIVATION: Estimating the effects of interventions on patient outcome is one of the key aspects of personalized medicine. Their inference is often challenged by the fact that the training data comprises only the outcome for the administered treatment, and not for alternative treatments (the so-call...
Autores principales: | Schrod, S, Schäfer, A, Solbrig, S, Lohmayer, R, Gronwald, W, Oefner, P J, Beißbarth, T, Spang, R, Zacharias, H U, Altenbuchinger, M |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9235492/ https://www.ncbi.nlm.nih.gov/pubmed/35758796 http://dx.doi.org/10.1093/bioinformatics/btac221 |
Ejemplares similares
-
MOJITOO: a fast and universal method for integration of multimodal single-cell data
por: Cheng, Mingbo, et al.
Publicado: (2022) -
Fast and interpretable genomic data analysis using multiple approximate kernel learning
por: Bektaş, Ayyüce Begüm, et al.
Publicado: (2022) -
psupertime: supervised pseudotime analysis for time-series single-cell RNA-seq data
por: Macnair, Will, et al.
Publicado: (2022) -
Visualizing hierarchies in scRNA-seq data using a density tree-biased autoencoder
por: Garrido, Quentin, et al.
Publicado: (2022) -
Semi-deconvolution of bulk and single-cell RNA-seq data with application to metastatic progression in breast cancer
por: Lei, Haoyun, et al.
Publicado: (2022)