Cargando…
DeepMHCII: a novel binding core-aware deep interaction model for accurate MHC-II peptide binding affinity prediction
MOTIVATION: Computationally predicting major histocompatibility complex (MHC)-peptide binding affinity is an important problem in immunological bioinformatics. Recent cutting-edge deep learning-based methods for this problem are unable to achieve satisfactory performance for MHC class II molecules....
Autores principales: | You, Ronghui, Qu, Wei, Mamitsuka, Hiroshi, Zhu, Shanfeng |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9235502/ https://www.ncbi.nlm.nih.gov/pubmed/35758790 http://dx.doi.org/10.1093/bioinformatics/btac225 |
Ejemplares similares
-
DeepMHCI: an anchor position-aware deep interaction model for accurate MHC-I peptide binding affinity prediction
por: Qu, Wei, et al.
Publicado: (2023) -
SPARSE: a sparse hypergraph neural network for learning multiple types of latent combinations to accurately predict drug–drug interactions
por: Nguyen, Duc Anh, et al.
Publicado: (2022) -
Retracted: DeepCRISTL: deep transfer learning to predict CRISPR/Cas9 functional and endogenous on-target editing efficiency
por: Elkayam, Shai, et al.
Publicado: (2022) -
DECODE: a computational pipeline to discover T cell receptor binding rules
por: Papadopoulou, Iliana, et al.
Publicado: (2022) -
Deep kernel learning improves molecular fingerprint prediction from tandem mass spectra
por: Dührkop, Kai
Publicado: (2022)