Cargando…
Deep kernel learning improves molecular fingerprint prediction from tandem mass spectra
MOTIVATION: Untargeted metabolomics experiments rely on spectral libraries for structure annotation, but these libraries are vastly incomplete; in silico methods search in structure databases, allowing us to overcome this limitation. The best-performing in silico methods use machine learning to pred...
Autor principal: | Dührkop, Kai |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9235503/ https://www.ncbi.nlm.nih.gov/pubmed/35758813 http://dx.doi.org/10.1093/bioinformatics/btac260 |
Ejemplares similares
-
Fast and interpretable genomic data analysis using multiple approximate kernel learning
por: Bektaş, Ayyüce Begüm, et al.
Publicado: (2022) -
Robust fingerprinting of genomic databases
por: Ji, Tianxi, et al.
Publicado: (2022) -
DeepGOZero: improving protein function prediction from sequence and zero-shot learning based on ontology axioms
por: Kulmanov, Maxat, et al.
Publicado: (2022) -
Retracted: DeepCRISTL: deep transfer learning to predict CRISPR/Cas9 functional and endogenous on-target editing efficiency
por: Elkayam, Shai, et al.
Publicado: (2022) -
DeepMHCII: a novel binding core-aware deep interaction model for accurate MHC-II peptide binding affinity prediction
por: You, Ronghui, et al.
Publicado: (2022)