Cargando…
Fast and interpretable genomic data analysis using multiple approximate kernel learning
MOTIVATION: Dataset sizes in computational biology have been increased drastically with the help of improved data collection tools and increasing size of patient cohorts. Previous kernel-based machine learning algorithms proposed for increased interpretability started to fail with large sample sizes...
Autores principales: | Bektaş, Ayyüce Begüm, Ak, Çiğdem, Gönen, Mehmet |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9235505/ https://www.ncbi.nlm.nih.gov/pubmed/35758810 http://dx.doi.org/10.1093/bioinformatics/btac241 |
Ejemplares similares
-
Deep kernel learning improves molecular fingerprint prediction from tandem mass spectra
por: Dührkop, Kai
Publicado: (2022) -
MOJITOO: a fast and universal method for integration of multimodal single-cell data
por: Cheng, Mingbo, et al.
Publicado: (2022) -
SPARSE: a sparse hypergraph neural network for learning multiple types of latent combinations to accurately predict drug–drug interactions
por: Nguyen, Duc Anh, et al.
Publicado: (2022) -
CMash: fast, multi-resolution estimation of k-mer-based Jaccard and containment indices
por: Liu, Shaopeng, et al.
Publicado: (2022) -
Robust fingerprinting of genomic databases
por: Ji, Tianxi, et al.
Publicado: (2022)