Cargando…
A graph neural network approach for molecule carcinogenicity prediction
MOTIVATION: Molecular carcinogenicity is a preventable cause of cancer, but systematically identifying carcinogenic compounds, which involves performing experiments on animal models, is expensive, time consuming and low throughput. As a result, carcinogenicity information is limited and building dat...
Autores principales: | Fradkin, Philip, Young, Adamo, Atanackovic, Lazar, Frey, Brendan, Lee, Leo J, Wang, Bo |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9235510/ https://www.ncbi.nlm.nih.gov/pubmed/35758812 http://dx.doi.org/10.1093/bioinformatics/btac266 |
Ejemplares similares
-
The effect of genome graph expressiveness on the discrepancy between genome graph distance and string set distance
por: Qiu, Yutong, et al.
Publicado: (2022) -
Phage–bacterial contig association prediction with a convolutional neural network
por: Tang, Tianqi, et al.
Publicado: (2022) -
MLGL-MP: a Multi-Label Graph Learning framework enhanced by pathway interdependence for Metabolic Pathway prediction
por: Du, Bing-Xue, et al.
Publicado: (2022) -
SPARSE: a sparse hypergraph neural network for learning multiple types of latent combinations to accurately predict drug–drug interactions
por: Nguyen, Duc Anh, et al.
Publicado: (2022) -
Computing optimal factories in metabolic networks with negative regulation
por: Krieger, Spencer, et al.
Publicado: (2022)