Cargando…
Visualizing hierarchies in scRNA-seq data using a density tree-biased autoencoder
MOTIVATION: Single-cell RNA sequencing (scRNA-seq) allows studying the development of cells in unprecedented detail. Given that many cellular differentiation processes are hierarchical, their scRNA-seq data are expected to be approximately tree-shaped in gene expression space. Inference and represen...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9235514/ https://www.ncbi.nlm.nih.gov/pubmed/35758814 http://dx.doi.org/10.1093/bioinformatics/btac249 |
_version_ | 1784736328576925696 |
---|---|
author | Garrido, Quentin Damrich, Sebastian Jäger, Alexander Cerletti, Dario Claassen, Manfred Najman, Laurent Hamprecht, Fred A |
author_facet | Garrido, Quentin Damrich, Sebastian Jäger, Alexander Cerletti, Dario Claassen, Manfred Najman, Laurent Hamprecht, Fred A |
author_sort | Garrido, Quentin |
collection | PubMed |
description | MOTIVATION: Single-cell RNA sequencing (scRNA-seq) allows studying the development of cells in unprecedented detail. Given that many cellular differentiation processes are hierarchical, their scRNA-seq data are expected to be approximately tree-shaped in gene expression space. Inference and representation of this tree structure in two dimensions is highly desirable for biological interpretation and exploratory analysis. RESULTS: Our two contributions are an approach for identifying a meaningful tree structure from high-dimensional scRNA-seq data, and a visualization method respecting the tree structure. We extract the tree structure by means of a density-based maximum spanning tree on a vector quantization of the data and show that it captures biological information well. We then introduce density-tree biased autoencoder (DTAE), a tree-biased autoencoder that emphasizes the tree structure of the data in low dimensional space. We compare to other dimension reduction methods and demonstrate the success of our method both qualitatively and quantitatively on real and toy data. AVAILABILITY AND IMPLEMENTATION: Our implementation relying on PyTorch and Higra is available at github.com/hci-unihd/DTAE. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online. |
format | Online Article Text |
id | pubmed-9235514 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | Oxford University Press |
record_format | MEDLINE/PubMed |
spelling | pubmed-92355142022-06-29 Visualizing hierarchies in scRNA-seq data using a density tree-biased autoencoder Garrido, Quentin Damrich, Sebastian Jäger, Alexander Cerletti, Dario Claassen, Manfred Najman, Laurent Hamprecht, Fred A Bioinformatics ISCB/Ismb 2022 MOTIVATION: Single-cell RNA sequencing (scRNA-seq) allows studying the development of cells in unprecedented detail. Given that many cellular differentiation processes are hierarchical, their scRNA-seq data are expected to be approximately tree-shaped in gene expression space. Inference and representation of this tree structure in two dimensions is highly desirable for biological interpretation and exploratory analysis. RESULTS: Our two contributions are an approach for identifying a meaningful tree structure from high-dimensional scRNA-seq data, and a visualization method respecting the tree structure. We extract the tree structure by means of a density-based maximum spanning tree on a vector quantization of the data and show that it captures biological information well. We then introduce density-tree biased autoencoder (DTAE), a tree-biased autoencoder that emphasizes the tree structure of the data in low dimensional space. We compare to other dimension reduction methods and demonstrate the success of our method both qualitatively and quantitatively on real and toy data. AVAILABILITY AND IMPLEMENTATION: Our implementation relying on PyTorch and Higra is available at github.com/hci-unihd/DTAE. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online. Oxford University Press 2022-06-27 /pmc/articles/PMC9235514/ /pubmed/35758814 http://dx.doi.org/10.1093/bioinformatics/btac249 Text en © The Author(s) 2022. Published by Oxford University Press. https://creativecommons.org/licenses/by/4.0/This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | ISCB/Ismb 2022 Garrido, Quentin Damrich, Sebastian Jäger, Alexander Cerletti, Dario Claassen, Manfred Najman, Laurent Hamprecht, Fred A Visualizing hierarchies in scRNA-seq data using a density tree-biased autoencoder |
title | Visualizing hierarchies in scRNA-seq data using a density tree-biased autoencoder |
title_full | Visualizing hierarchies in scRNA-seq data using a density tree-biased autoencoder |
title_fullStr | Visualizing hierarchies in scRNA-seq data using a density tree-biased autoencoder |
title_full_unstemmed | Visualizing hierarchies in scRNA-seq data using a density tree-biased autoencoder |
title_short | Visualizing hierarchies in scRNA-seq data using a density tree-biased autoencoder |
title_sort | visualizing hierarchies in scrna-seq data using a density tree-biased autoencoder |
topic | ISCB/Ismb 2022 |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9235514/ https://www.ncbi.nlm.nih.gov/pubmed/35758814 http://dx.doi.org/10.1093/bioinformatics/btac249 |
work_keys_str_mv | AT garridoquentin visualizinghierarchiesinscrnaseqdatausingadensitytreebiasedautoencoder AT damrichsebastian visualizinghierarchiesinscrnaseqdatausingadensitytreebiasedautoencoder AT jageralexander visualizinghierarchiesinscrnaseqdatausingadensitytreebiasedautoencoder AT cerlettidario visualizinghierarchiesinscrnaseqdatausingadensitytreebiasedautoencoder AT claassenmanfred visualizinghierarchiesinscrnaseqdatausingadensitytreebiasedautoencoder AT najmanlaurent visualizinghierarchiesinscrnaseqdatausingadensitytreebiasedautoencoder AT hamprechtfreda visualizinghierarchiesinscrnaseqdatausingadensitytreebiasedautoencoder |