Cargando…

Visualizing hierarchies in scRNA-seq data using a density tree-biased autoencoder

MOTIVATION: Single-cell RNA sequencing (scRNA-seq) allows studying the development of cells in unprecedented detail. Given that many cellular differentiation processes are hierarchical, their scRNA-seq data are expected to be approximately tree-shaped in gene expression space. Inference and represen...

Descripción completa

Detalles Bibliográficos
Autores principales: Garrido, Quentin, Damrich, Sebastian, Jäger, Alexander, Cerletti, Dario, Claassen, Manfred, Najman, Laurent, Hamprecht, Fred A
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Oxford University Press 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9235514/
https://www.ncbi.nlm.nih.gov/pubmed/35758814
http://dx.doi.org/10.1093/bioinformatics/btac249
_version_ 1784736328576925696
author Garrido, Quentin
Damrich, Sebastian
Jäger, Alexander
Cerletti, Dario
Claassen, Manfred
Najman, Laurent
Hamprecht, Fred A
author_facet Garrido, Quentin
Damrich, Sebastian
Jäger, Alexander
Cerletti, Dario
Claassen, Manfred
Najman, Laurent
Hamprecht, Fred A
author_sort Garrido, Quentin
collection PubMed
description MOTIVATION: Single-cell RNA sequencing (scRNA-seq) allows studying the development of cells in unprecedented detail. Given that many cellular differentiation processes are hierarchical, their scRNA-seq data are expected to be approximately tree-shaped in gene expression space. Inference and representation of this tree structure in two dimensions is highly desirable for biological interpretation and exploratory analysis. RESULTS: Our two contributions are an approach for identifying a meaningful tree structure from high-dimensional scRNA-seq data, and a visualization method respecting the tree structure. We extract the tree structure by means of a density-based maximum spanning tree on a vector quantization of the data and show that it captures biological information well. We then introduce density-tree biased autoencoder (DTAE), a tree-biased autoencoder that emphasizes the tree structure of the data in low dimensional space. We compare to other dimension reduction methods and demonstrate the success of our method both qualitatively and quantitatively on real and toy data. AVAILABILITY AND IMPLEMENTATION: Our implementation relying on PyTorch and Higra is available at github.com/hci-unihd/DTAE. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.
format Online
Article
Text
id pubmed-9235514
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher Oxford University Press
record_format MEDLINE/PubMed
spelling pubmed-92355142022-06-29 Visualizing hierarchies in scRNA-seq data using a density tree-biased autoencoder Garrido, Quentin Damrich, Sebastian Jäger, Alexander Cerletti, Dario Claassen, Manfred Najman, Laurent Hamprecht, Fred A Bioinformatics ISCB/Ismb 2022 MOTIVATION: Single-cell RNA sequencing (scRNA-seq) allows studying the development of cells in unprecedented detail. Given that many cellular differentiation processes are hierarchical, their scRNA-seq data are expected to be approximately tree-shaped in gene expression space. Inference and representation of this tree structure in two dimensions is highly desirable for biological interpretation and exploratory analysis. RESULTS: Our two contributions are an approach for identifying a meaningful tree structure from high-dimensional scRNA-seq data, and a visualization method respecting the tree structure. We extract the tree structure by means of a density-based maximum spanning tree on a vector quantization of the data and show that it captures biological information well. We then introduce density-tree biased autoencoder (DTAE), a tree-biased autoencoder that emphasizes the tree structure of the data in low dimensional space. We compare to other dimension reduction methods and demonstrate the success of our method both qualitatively and quantitatively on real and toy data. AVAILABILITY AND IMPLEMENTATION: Our implementation relying on PyTorch and Higra is available at github.com/hci-unihd/DTAE. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online. Oxford University Press 2022-06-27 /pmc/articles/PMC9235514/ /pubmed/35758814 http://dx.doi.org/10.1093/bioinformatics/btac249 Text en © The Author(s) 2022. Published by Oxford University Press. https://creativecommons.org/licenses/by/4.0/This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.
spellingShingle ISCB/Ismb 2022
Garrido, Quentin
Damrich, Sebastian
Jäger, Alexander
Cerletti, Dario
Claassen, Manfred
Najman, Laurent
Hamprecht, Fred A
Visualizing hierarchies in scRNA-seq data using a density tree-biased autoencoder
title Visualizing hierarchies in scRNA-seq data using a density tree-biased autoencoder
title_full Visualizing hierarchies in scRNA-seq data using a density tree-biased autoencoder
title_fullStr Visualizing hierarchies in scRNA-seq data using a density tree-biased autoencoder
title_full_unstemmed Visualizing hierarchies in scRNA-seq data using a density tree-biased autoencoder
title_short Visualizing hierarchies in scRNA-seq data using a density tree-biased autoencoder
title_sort visualizing hierarchies in scrna-seq data using a density tree-biased autoencoder
topic ISCB/Ismb 2022
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9235514/
https://www.ncbi.nlm.nih.gov/pubmed/35758814
http://dx.doi.org/10.1093/bioinformatics/btac249
work_keys_str_mv AT garridoquentin visualizinghierarchiesinscrnaseqdatausingadensitytreebiasedautoencoder
AT damrichsebastian visualizinghierarchiesinscrnaseqdatausingadensitytreebiasedautoencoder
AT jageralexander visualizinghierarchiesinscrnaseqdatausingadensitytreebiasedautoencoder
AT cerlettidario visualizinghierarchiesinscrnaseqdatausingadensitytreebiasedautoencoder
AT claassenmanfred visualizinghierarchiesinscrnaseqdatausingadensitytreebiasedautoencoder
AT najmanlaurent visualizinghierarchiesinscrnaseqdatausingadensitytreebiasedautoencoder
AT hamprechtfreda visualizinghierarchiesinscrnaseqdatausingadensitytreebiasedautoencoder