Cargando…
A combined test for feature selection on sparse metaproteomics data—an alternative to missing value imputation
One of the difficulties encountered in the statistical analysis of metaproteomics data is the high proportion of missing values, which are usually treated by imputation. Nevertheless, imputation methods are based on restrictive assumptions regarding missingness mechanisms, namely “at random” or “not...
Autores principales: | Plancade, Sandra, Berland, Magali, Blein-Nicolas, Mélisande, Langella, Olivier, Bassignani, Ariane, Juste, Catherine |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
PeerJ Inc.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9235818/ https://www.ncbi.nlm.nih.gov/pubmed/35769140 http://dx.doi.org/10.7717/peerj.13525 |
Ejemplares similares
-
Modern Metaproteomics: A Unique Tool to Characterize the Active Microbiome in Health and Diseases, and Pave the Road towards New Biomarkers—Example of Crohn’s Disease and Ulcerative Colitis Flare-Ups
por: Henry, Céline, et al.
Publicado: (2022) -
Imputing missing distances in molecular phylogenetics
por: Xia, Xuhua
Publicado: (2018) -
A Sparse-Modeling Based Approach for Class Specific Feature Selection
por: Nardone, Davide, et al.
Publicado: (2019) -
StrainFLAIR: strain-level profiling of metagenomic samples using variation graphs
por: Da Silva, Kévin, et al.
Publicado: (2021) -
Analysis of the infant gut microbiome reveals metabolic functional roles associated with healthy infants and infants with atopic dermatitis using metaproteomics
por: Kingkaw, Amornthep, et al.
Publicado: (2020)