Cargando…
Interpreting protein variant effects with computational predictors and deep mutational scanning
Computational predictors of genetic variant effect have advanced rapidly in recent years. These programs provide clinical and research laboratories with a rapid and scalable method to assess the likely impacts of novel variants. However, it can be difficult to know to what extent we can trust their...
Autores principales: | Livesey, Benjamin J., Marsh, Joseph A. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The Company of Biologists Ltd
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9235876/ https://www.ncbi.nlm.nih.gov/pubmed/35736673 http://dx.doi.org/10.1242/dmm.049510 |
Ejemplares similares
-
Updated benchmarking of variant effect predictors using deep mutational scanning
por: Livesey, Benjamin J, et al.
Publicado: (2023) -
Using deep mutational scanning to benchmark variant effect predictors and identify disease mutations
por: Livesey, Benjamin J, et al.
Publicado: (2020) -
Correspondence between functional scores from deep mutational scans and predicted effects on protein stability
por: Gerasimavicius, Lukas, et al.
Publicado: (2023) -
The properties of human disease mutations at protein interfaces
por: Livesey, Benjamin J., et al.
Publicado: (2022) -
Loss-of-function, gain-of-function and dominant-negative mutations have profoundly different effects on protein structure
por: Gerasimavicius, Lukas, et al.
Publicado: (2022)