Cargando…
Comparing the reliability of different ICA algorithms for fMRI analysis
Independent component analysis (ICA) has been shown to be a powerful blind source separation technique for analyzing functional magnetic resonance imaging (fMRI) data sets. ICA can extract independent spatial maps and their corresponding time courses from fMRI data without a priori specification of...
Autores principales: | Wei, Pengxu, Bao, Ruixue, Fan, Yubo |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9236259/ https://www.ncbi.nlm.nih.gov/pubmed/35759502 http://dx.doi.org/10.1371/journal.pone.0270556 |
Ejemplares similares
-
Temporally and Spatially Constrained ICA of fMRI Data Analysis
por: Wang, Zhi, et al.
Publicado: (2014) -
Hand classification of fMRI ICA noise components
por: Griffanti, Ludovica, et al.
Publicado: (2017) -
ICA-fNORM: Spatial Normalization of fMRI Data Using Intrinsic Group-ICA Networks
por: Khullar, Siddharth, et al.
Publicado: (2011) -
Data-driven analysis of simultaneous EEG/fMRI using an ICA approach
por: Schmüser, Lena, et al.
Publicado: (2014) -
A Constrained ICA-EMD Model for Group Level fMRI Analysis
por: Wein, Simon, et al.
Publicado: (2020)