Cargando…
Super Resolution Image Visual Quality Assessment Based on Feature Optimization
Most existing no-referenced image quality assessment (NR-IQA) algorithms need to extract features first and then predict image quality. However, only a small number of features work in the model, and the rest will degrade the model performance. Consequently, an NR-IQA framework based on feature opti...
Autores principales: | Lei, Shu, Zijian, Huang, Jiebin, Yan, Fengchang, Fei |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9236850/ https://www.ncbi.nlm.nih.gov/pubmed/35769272 http://dx.doi.org/10.1155/2022/1263348 |
Ejemplares similares
-
Evaluation of fluorophores for optimal performance in localization-based super-resolution imaging
por: Dempsey, Graham T., et al.
Publicado: (2011) -
Visualization of Protein Sorting at the Trans-Golgi Network and Endosomes Through Super-Resolution Imaging
por: Huang, Yan, et al.
Publicado: (2019) -
Single Image Super-Resolution Based on Global Dense Feature Fusion Convolutional Network
por: Xu, Wang, et al.
Publicado: (2019) -
Single image super-resolution via Image Quality Assessment-Guided Deep Learning Network
por: Xiong, Zhengqiang, et al.
Publicado: (2020) -
Fluorescent Nanoparticles for Super-Resolution Imaging
por: Li, Wei, et al.
Publicado: (2022)