Cargando…

GenomicSuperSignature facilitates interpretation of RNA-seq experiments through robust, efficient comparison to public databases

Millions of transcriptomic profiles have been deposited in public archives, yet remain underused for the interpretation of new experiments. We present a method for interpreting new transcriptomic datasets through instant comparison to public datasets without high-performance computing requirements....

Descripción completa

Detalles Bibliográficos
Autores principales: Oh, Sehyun, Geistlinger, Ludwig, Ramos, Marcel, Blankenberg, Daniel, van den Beek, Marius, Taroni, Jaclyn N., Carey, Vincent J., Greene, Casey S., Waldron, Levi, Davis, Sean
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9237024/
https://www.ncbi.nlm.nih.gov/pubmed/35760813
http://dx.doi.org/10.1038/s41467-022-31411-3
_version_ 1784736673790164992
author Oh, Sehyun
Geistlinger, Ludwig
Ramos, Marcel
Blankenberg, Daniel
van den Beek, Marius
Taroni, Jaclyn N.
Carey, Vincent J.
Greene, Casey S.
Waldron, Levi
Davis, Sean
author_facet Oh, Sehyun
Geistlinger, Ludwig
Ramos, Marcel
Blankenberg, Daniel
van den Beek, Marius
Taroni, Jaclyn N.
Carey, Vincent J.
Greene, Casey S.
Waldron, Levi
Davis, Sean
author_sort Oh, Sehyun
collection PubMed
description Millions of transcriptomic profiles have been deposited in public archives, yet remain underused for the interpretation of new experiments. We present a method for interpreting new transcriptomic datasets through instant comparison to public datasets without high-performance computing requirements. We apply Principal Component Analysis on 536 studies comprising 44,890 human RNA sequencing profiles and aggregate sufficiently similar loading vectors to form Replicable Axes of Variation (RAV). RAVs are annotated with metadata of originating studies and by gene set enrichment analysis. Functionality to associate new datasets with RAVs, extract interpretable annotations, and provide intuitive visualization are implemented as the GenomicSuperSignature R/Bioconductor package. We demonstrate the efficient and coherent database search, robustness to batch effects and heterogeneous training data, and transfer learning capacity of our method using TCGA and rare diseases datasets. GenomicSuperSignature aids in analyzing new gene expression data in the context of existing databases using minimal computing resources.
format Online
Article
Text
id pubmed-9237024
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher Nature Publishing Group UK
record_format MEDLINE/PubMed
spelling pubmed-92370242022-06-29 GenomicSuperSignature facilitates interpretation of RNA-seq experiments through robust, efficient comparison to public databases Oh, Sehyun Geistlinger, Ludwig Ramos, Marcel Blankenberg, Daniel van den Beek, Marius Taroni, Jaclyn N. Carey, Vincent J. Greene, Casey S. Waldron, Levi Davis, Sean Nat Commun Article Millions of transcriptomic profiles have been deposited in public archives, yet remain underused for the interpretation of new experiments. We present a method for interpreting new transcriptomic datasets through instant comparison to public datasets without high-performance computing requirements. We apply Principal Component Analysis on 536 studies comprising 44,890 human RNA sequencing profiles and aggregate sufficiently similar loading vectors to form Replicable Axes of Variation (RAV). RAVs are annotated with metadata of originating studies and by gene set enrichment analysis. Functionality to associate new datasets with RAVs, extract interpretable annotations, and provide intuitive visualization are implemented as the GenomicSuperSignature R/Bioconductor package. We demonstrate the efficient and coherent database search, robustness to batch effects and heterogeneous training data, and transfer learning capacity of our method using TCGA and rare diseases datasets. GenomicSuperSignature aids in analyzing new gene expression data in the context of existing databases using minimal computing resources. Nature Publishing Group UK 2022-06-27 /pmc/articles/PMC9237024/ /pubmed/35760813 http://dx.doi.org/10.1038/s41467-022-31411-3 Text en © The Author(s) 2022 https://creativecommons.org/licenses/by/4.0/Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) .
spellingShingle Article
Oh, Sehyun
Geistlinger, Ludwig
Ramos, Marcel
Blankenberg, Daniel
van den Beek, Marius
Taroni, Jaclyn N.
Carey, Vincent J.
Greene, Casey S.
Waldron, Levi
Davis, Sean
GenomicSuperSignature facilitates interpretation of RNA-seq experiments through robust, efficient comparison to public databases
title GenomicSuperSignature facilitates interpretation of RNA-seq experiments through robust, efficient comparison to public databases
title_full GenomicSuperSignature facilitates interpretation of RNA-seq experiments through robust, efficient comparison to public databases
title_fullStr GenomicSuperSignature facilitates interpretation of RNA-seq experiments through robust, efficient comparison to public databases
title_full_unstemmed GenomicSuperSignature facilitates interpretation of RNA-seq experiments through robust, efficient comparison to public databases
title_short GenomicSuperSignature facilitates interpretation of RNA-seq experiments through robust, efficient comparison to public databases
title_sort genomicsupersignature facilitates interpretation of rna-seq experiments through robust, efficient comparison to public databases
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9237024/
https://www.ncbi.nlm.nih.gov/pubmed/35760813
http://dx.doi.org/10.1038/s41467-022-31411-3
work_keys_str_mv AT ohsehyun genomicsupersignaturefacilitatesinterpretationofrnaseqexperimentsthroughrobustefficientcomparisontopublicdatabases
AT geistlingerludwig genomicsupersignaturefacilitatesinterpretationofrnaseqexperimentsthroughrobustefficientcomparisontopublicdatabases
AT ramosmarcel genomicsupersignaturefacilitatesinterpretationofrnaseqexperimentsthroughrobustefficientcomparisontopublicdatabases
AT blankenbergdaniel genomicsupersignaturefacilitatesinterpretationofrnaseqexperimentsthroughrobustefficientcomparisontopublicdatabases
AT vandenbeekmarius genomicsupersignaturefacilitatesinterpretationofrnaseqexperimentsthroughrobustefficientcomparisontopublicdatabases
AT taronijaclynn genomicsupersignaturefacilitatesinterpretationofrnaseqexperimentsthroughrobustefficientcomparisontopublicdatabases
AT careyvincentj genomicsupersignaturefacilitatesinterpretationofrnaseqexperimentsthroughrobustefficientcomparisontopublicdatabases
AT greenecaseys genomicsupersignaturefacilitatesinterpretationofrnaseqexperimentsthroughrobustefficientcomparisontopublicdatabases
AT waldronlevi genomicsupersignaturefacilitatesinterpretationofrnaseqexperimentsthroughrobustefficientcomparisontopublicdatabases
AT davissean genomicsupersignaturefacilitatesinterpretationofrnaseqexperimentsthroughrobustefficientcomparisontopublicdatabases