Cargando…
Context-aware deconvolution of cell–cell communication with Tensor-cell2cell
Cell interactions determine phenotypes, and intercellular communication is shaped by cellular contexts such as disease state, organismal life stage, and tissue microenvironment. Single-cell technologies measure the molecules mediating cell–cell communication, and emerging computational tools can exp...
Autores principales: | Armingol, Erick, Baghdassarian, Hratch M., Martino, Cameron, Perez-Lopez, Araceli, Aamodt, Caitlin, Knight, Rob, Lewis, Nathan E. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9237099/ https://www.ncbi.nlm.nih.gov/pubmed/35760817 http://dx.doi.org/10.1038/s41467-022-31369-2 |
Ejemplares similares
-
Combining LIANA and Tensor-cell2cell to decipher cell-cell communication across multiple samples
por: Baghdassarian, Hratch, et al.
Publicado: (2023) -
Deciphering cell–cell interactions and communication from gene expression
por: Armingol, Erick, et al.
Publicado: (2020) -
Inferring a spatial code of cell-cell interactions across a whole animal body
por: Armingol, Erick, et al.
Publicado: (2022) -
Context-aware dimensionality reduction deconvolutes gut microbial community dynamics
por: Martino, Cameron, et al.
Publicado: (2020) -
Single-cell Bayesian deconvolution
por: Torregrosa-Cortés, Gabriel, et al.
Publicado: (2023)