Cargando…
Artificial intelligence to detect abnormal heart rhythm from scanned electrocardiogram tracings
BACKGROUND: Electrocardiogram (ECG) interpretation is an integral part of the clinical ECG workflow; however, this process is often time‐consuming and labor‐intensive. We aim to develop a rapid, inexpensive means to detect abnormal ECGs using artificial intelligence (AI) from scanned ECG printouts....
Autores principales: | Bridge, Joshua, Fu, Lu, Lin, Weidong, Xue, Yumei, Lip, Gregory Y. H., Zheng, Yalin |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9237304/ https://www.ncbi.nlm.nih.gov/pubmed/35785392 http://dx.doi.org/10.1002/joa3.12707 |
Ejemplares similares
-
Deep learning-based electrocardiogram rhythm and beat features for heart abnormality classification
por: Darmawahyuni, Annisa, et al.
Publicado: (2022) -
Intracavitary Electrocardiogram Guidance Aids Excavation of Rhythm Abnormalities in Patients with Occult Heart Disease
por: Wei, Yanli, et al.
Publicado: (2021) -
The emerging role of artificial intelligence enabled electrocardiograms in healthcare
por: Sau, Arunashis, et al.
Publicado: (2023) -
An artificial intelligence–based model for prediction of atrial fibrillation from single-lead sinus rhythm electrocardiograms facilitating screening
por: Hygrell, Tove, et al.
Publicado: (2023) -
Dual atrial rhythm on electrocardiogram
por: Bohora, Shomu
Publicado: (2015)