Cargando…
A Reliable Method to Recognize Soybean Seed Maturation Stages Based on Autofluorescence-Spectral Imaging Combined With Machine Learning Algorithms
In recent years, technological innovations have allowed significant advances in the diagnosis of seed quality. Seeds with superior physiological quality are those with the highest level of physiological maturity and the integration of rapid and precise methods to separate them contributes to better...
Autores principales: | Batista, Thiago Barbosa, Mastrangelo, Clíssia Barboza, de Medeiros, André Dantas, Petronilio, Ana Carolina Picinini, Fonseca de Oliveira, Gustavo Roberto, dos Santos, Isabela Lopes, Crusciol, Carlos Alexandre Costa, Amaral da Silva, Edvaldo Aparecido |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9237540/ https://www.ncbi.nlm.nih.gov/pubmed/35774807 http://dx.doi.org/10.3389/fpls.2022.914287 |
Ejemplares similares
-
An Approach Using Emerging Optical Technologies and Artificial Intelligence Brings New Markers to Evaluate Peanut Seed Quality
por: Fonseca de Oliveira, Gustavo Roberto, et al.
Publicado: (2022) -
Autofluorescence-spectral imaging as an innovative method for rapid, non-destructive and reliable assessing of soybean seed quality
por: Barboza da Silva, Clíssia, et al.
Publicado: (2021) -
Fungal identification in peanuts seeds through multispectral images: Technological advances to enhance sanitary quality
por: Sudki, Julia Marconato, et al.
Publicado: (2023) -
Interactive machine learning for soybean seed and seedling quality classification
por: de Medeiros, André Dantas, et al.
Publicado: (2020) -
Transcripts Expressed during Germination Sensu Stricto Are Associated with Vigor in Soybean Seeds
por: Ducatti, Karina Renostro, et al.
Publicado: (2022)