Cargando…
Transcriptome of Endophyte-Positive and Endophyte-Free Tall Fescue Under Field Stresses
Tall fescue is one of the primary sources of forage for livestock. It grows well in the marginal soils of the temperate zones. It hosts a fungal endophyte (Epichloë coenophiala), which helps the plants to tolerate abiotic and biotic stresses. The genomic and transcriptomic resources of tall fescue a...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9237612/ https://www.ncbi.nlm.nih.gov/pubmed/35774806 http://dx.doi.org/10.3389/fpls.2022.803400 |
_version_ | 1784736838253019136 |
---|---|
author | Islam, Md. Shofiqul Krom, Nick Kwon, Taegun Li, Guifen Saha, Malay C. |
author_facet | Islam, Md. Shofiqul Krom, Nick Kwon, Taegun Li, Guifen Saha, Malay C. |
author_sort | Islam, Md. Shofiqul |
collection | PubMed |
description | Tall fescue is one of the primary sources of forage for livestock. It grows well in the marginal soils of the temperate zones. It hosts a fungal endophyte (Epichloë coenophiala), which helps the plants to tolerate abiotic and biotic stresses. The genomic and transcriptomic resources of tall fescue are very limited, due to a complex genetic background and outbreeding modes of pollination. The aim of this study was to identify differentially expressed genes (DEGs) in two tissues (pseudostem and leaf blade) between novel endophyte positive (E+) and endophyte-free (E−) Texoma MaxQ II tall fescue genotypes. Samples were collected at three diurnal time points: morning (7:40–9:00 am), afternoon (1:15–2:15 pm), and evening (4:45–5:45 pm) in the field environment. By exploring the transcriptional landscape via RNA-seq, for the first time, we generated 226,054 and 224,376 transcripts from E+ and E− tall fescue, respectively through de novo assembly. The upregulated transcripts were detected fewer than the downregulated ones in both tissues (S: 803 up and 878 down; L: 783 up and 846 down) under the freezing temperatures (−3.0–0.5°C) in the morning. Gene Ontology enrichment analysis identified 3 out of top 10 significant GO terms only in the morning samples. Metabolic pathway and biosynthesis of secondary metabolite genes showed lowest number of DEGs under morning freezing stress and highest number in evening cold condition. The 1,085 DEGs were only expressed under morning stress condition and, more importantly, the eight candidate orthologous genes of rice identified under morning freezing temperatures, including orthologs of rice phytochrome A, phytochrome C, and ethylene receptor genes, might be the possible route underlying cold tolerance in tall fescue. |
format | Online Article Text |
id | pubmed-9237612 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | Frontiers Media S.A. |
record_format | MEDLINE/PubMed |
spelling | pubmed-92376122022-06-29 Transcriptome of Endophyte-Positive and Endophyte-Free Tall Fescue Under Field Stresses Islam, Md. Shofiqul Krom, Nick Kwon, Taegun Li, Guifen Saha, Malay C. Front Plant Sci Plant Science Tall fescue is one of the primary sources of forage for livestock. It grows well in the marginal soils of the temperate zones. It hosts a fungal endophyte (Epichloë coenophiala), which helps the plants to tolerate abiotic and biotic stresses. The genomic and transcriptomic resources of tall fescue are very limited, due to a complex genetic background and outbreeding modes of pollination. The aim of this study was to identify differentially expressed genes (DEGs) in two tissues (pseudostem and leaf blade) between novel endophyte positive (E+) and endophyte-free (E−) Texoma MaxQ II tall fescue genotypes. Samples were collected at three diurnal time points: morning (7:40–9:00 am), afternoon (1:15–2:15 pm), and evening (4:45–5:45 pm) in the field environment. By exploring the transcriptional landscape via RNA-seq, for the first time, we generated 226,054 and 224,376 transcripts from E+ and E− tall fescue, respectively through de novo assembly. The upregulated transcripts were detected fewer than the downregulated ones in both tissues (S: 803 up and 878 down; L: 783 up and 846 down) under the freezing temperatures (−3.0–0.5°C) in the morning. Gene Ontology enrichment analysis identified 3 out of top 10 significant GO terms only in the morning samples. Metabolic pathway and biosynthesis of secondary metabolite genes showed lowest number of DEGs under morning freezing stress and highest number in evening cold condition. The 1,085 DEGs were only expressed under morning stress condition and, more importantly, the eight candidate orthologous genes of rice identified under morning freezing temperatures, including orthologs of rice phytochrome A, phytochrome C, and ethylene receptor genes, might be the possible route underlying cold tolerance in tall fescue. Frontiers Media S.A. 2022-06-14 /pmc/articles/PMC9237612/ /pubmed/35774806 http://dx.doi.org/10.3389/fpls.2022.803400 Text en Copyright © 2022 Islam, Krom, Kwon, Li and Saha. https://creativecommons.org/licenses/by/4.0/This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms. |
spellingShingle | Plant Science Islam, Md. Shofiqul Krom, Nick Kwon, Taegun Li, Guifen Saha, Malay C. Transcriptome of Endophyte-Positive and Endophyte-Free Tall Fescue Under Field Stresses |
title | Transcriptome of Endophyte-Positive and Endophyte-Free Tall Fescue Under Field Stresses |
title_full | Transcriptome of Endophyte-Positive and Endophyte-Free Tall Fescue Under Field Stresses |
title_fullStr | Transcriptome of Endophyte-Positive and Endophyte-Free Tall Fescue Under Field Stresses |
title_full_unstemmed | Transcriptome of Endophyte-Positive and Endophyte-Free Tall Fescue Under Field Stresses |
title_short | Transcriptome of Endophyte-Positive and Endophyte-Free Tall Fescue Under Field Stresses |
title_sort | transcriptome of endophyte-positive and endophyte-free tall fescue under field stresses |
topic | Plant Science |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9237612/ https://www.ncbi.nlm.nih.gov/pubmed/35774806 http://dx.doi.org/10.3389/fpls.2022.803400 |
work_keys_str_mv | AT islammdshofiqul transcriptomeofendophytepositiveandendophytefreetallfescueunderfieldstresses AT kromnick transcriptomeofendophytepositiveandendophytefreetallfescueunderfieldstresses AT kwontaegun transcriptomeofendophytepositiveandendophytefreetallfescueunderfieldstresses AT liguifen transcriptomeofendophytepositiveandendophytefreetallfescueunderfieldstresses AT sahamalayc transcriptomeofendophytepositiveandendophytefreetallfescueunderfieldstresses |