Cargando…

Transcriptome-wide prediction of prostate cancer gene expression from histopathology images using co-expression-based convolutional neural networks

MOTIVATION: Molecular phenotyping by gene expression profiling is central in contemporary cancer research and in molecular diagnostics but remains resource intense to implement. Changes in gene expression occurring in tumours cause morphological changes in tissue, which can be observed on the micros...

Descripción completa

Detalles Bibliográficos
Autores principales: Weitz, Philippe, Wang, Yinxi, Kartasalo, Kimmo, Egevad, Lars, Lindberg, Johan, Grönberg, Henrik, Eklund, Martin, Rantalainen, Mattias
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Oxford University Press 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9237721/
https://www.ncbi.nlm.nih.gov/pubmed/35595235
http://dx.doi.org/10.1093/bioinformatics/btac343
Descripción
Sumario:MOTIVATION: Molecular phenotyping by gene expression profiling is central in contemporary cancer research and in molecular diagnostics but remains resource intense to implement. Changes in gene expression occurring in tumours cause morphological changes in tissue, which can be observed on the microscopic level. The relationship between morphological patterns and some of the molecular phenotypes can be exploited to predict molecular phenotypes from routine haematoxylin and eosin-stained whole slide images (WSIs) using convolutional neural networks (CNNs). In this study, we propose a new, computationally efficient approach to model relationships between morphology and gene expression. RESULTS: We conducted the first transcriptome-wide analysis in prostate cancer, using CNNs to predict bulk RNA-sequencing estimates from WSIs for 370 patients from the TCGA PRAD study. Out of 15 586 protein coding transcripts, 6618 had predicted expression significantly associated with RNA-seq estimates (FDR-adjusted P-value <1×10(−4)) in a cross-validation and 5419 (81.9%) of these associations were subsequently validated in a held-out test set. We furthermore predicted the prognostic cell-cycle progression score directly from WSIs. These findings suggest that contemporary computer vision models offer an inexpensive and scalable solution for prediction of gene expression phenotypes directly from WSIs, providing opportunity for cost-effective large-scale research studies and molecular diagnostics. AVAILABILITY AND IMPLEMENTATION: A self-contained example is available from http://github.com/phiwei/prostate_coexpression. Model predictions and metrics are available from doi.org/10.5281/zenodo.4739097. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.