Cargando…
Transcriptome-wide prediction of prostate cancer gene expression from histopathology images using co-expression-based convolutional neural networks
MOTIVATION: Molecular phenotyping by gene expression profiling is central in contemporary cancer research and in molecular diagnostics but remains resource intense to implement. Changes in gene expression occurring in tumours cause morphological changes in tissue, which can be observed on the micros...
Autores principales: | Weitz, Philippe, Wang, Yinxi, Kartasalo, Kimmo, Egevad, Lars, Lindberg, Johan, Grönberg, Henrik, Eklund, Martin, Rantalainen, Mattias |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9237721/ https://www.ncbi.nlm.nih.gov/pubmed/35595235 http://dx.doi.org/10.1093/bioinformatics/btac343 |
Ejemplares similares
-
Predicting Molecular Phenotypes from Histopathology Images: A Transcriptome-Wide Expression–Morphology Analysis in Breast Cancer
por: Wang, Yinxi, et al.
Publicado: (2021) -
Using deep learning to detect patients at risk for prostate cancer despite benign biopsies
por: Liu, Bojing, et al.
Publicado: (2022) -
Detection of perineural invasion in prostate needle biopsies with deep neural networks
por: Kartasalo, Kimmo, et al.
Publicado: (2022) -
OpenPhi: an interface to access Philips iSyntax whole slide images for computational pathology
por: Mulliqi, Nita, et al.
Publicado: (2021) -
Are Prostate Specific-Antigen (PSA) and age associated with the risk of ISUP Grade 1 prostate cancer? Results from 72 996 individual biopsy cores in 6 083 men from the Stockholm3 study
por: Palsdottir, Thorgerdur, et al.
Publicado: (2019)