Cargando…

Development of a T cell-redirecting bispecific antibody targeting B-cell maturation antigen for the suppression of multiple myeloma cell growth

BACKGROUND: Multiple myeloma (MM) is the second most common hematological malignancy. It has emerged as one of the next possible hematological diseases amenable to immunotherapy. B-cell maturation antigen (BCMA), a member of the tumor necrosis factor receptor superfamily, is highly expressed in MM c...

Descripción completa

Detalles Bibliográficos
Autores principales: Huo, Jianxin, Huang, Yuhan, Zheng, Ziying, Tay, Xin Ni, Mahfut, Farouq Bin, Zhang, Wei, Lam, Kong-Peng, Yang, Yuansheng, Xu, Shengli
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Oxford University Press 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9237814/
https://www.ncbi.nlm.nih.gov/pubmed/35774245
http://dx.doi.org/10.1093/abt/tbac012
Descripción
Sumario:BACKGROUND: Multiple myeloma (MM) is the second most common hematological malignancy. It has emerged as one of the next possible hematological diseases amenable to immunotherapy. B-cell maturation antigen (BCMA), a member of the tumor necrosis factor receptor superfamily, is highly expressed in MM cells and is one target with the most potential for developing MM-targeting immunotherapy. Other than the FDA-approved BCMA-targeting CAR T-cell therapy, such as Abecma and CARVYKTI, T cell-engaging multi-specific antibody is another promising therapeutic modality for BCMA-targeting MM treatment. We develop a T-cell redirecting BCMA-targeting bispecific antibody (bsAb) and evaluate its anti-MM activity. METHODS: We first generated several clones of mouse anti-human BCMA monoclonal antibodies using DNA immunization. One of the anti-BCMA antibodies was then used to design and produce a T cell-redirecting BCMA × CD3 bsAb in CHO cells. Finally, we examined the effect of the bsAb on MM cell growth both in vitro and in vivo. RESULTS: The BCMA × CD3 bsAb was designed in a FabscFv format and produced in CHO cells with good yield and purity. Moreover, the bsAb can trigger robust T cell proliferation and activation and induce efficient T cell-mediated MM cell killing in vitro. Using a MM xenograft mouse model, we demonstrate that the bsAb can effectively suppress MM cell growth in vivo. CONCLUSIONS: Our results suggest that the BCMA × CD3 bsAb in the FabscFv format can efficiently inhibit MM cell growth and have promising potential to be developed into a therapeutic antibody drug for the treatment of MM.