Cargando…
Control of Morphology and Substrate Etching in InAs/InP Droplet Epitaxy Quantum Dots for Single and Entangled Photon Emitters
[Image: see text] We present a detailed atomic-resolution study of morphology and substrate etching mechanism in InAs/InP droplet epitaxy quantum dots (QDs) grown by metal–organic vapor phase epitaxy via cross-sectional scanning tunneling microscopy (X-STM). Two different etching processes are obser...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Chemical Society
2022
|
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9237823/ https://www.ncbi.nlm.nih.gov/pubmed/35783681 http://dx.doi.org/10.1021/acsanm.2c01197 |
_version_ | 1784736887868489728 |
---|---|
author | Gajjela, Raja Sekhar Reddy Sala, Elisa Maddalena Heffernan, Jon Koenraad, Paul M. |
author_facet | Gajjela, Raja Sekhar Reddy Sala, Elisa Maddalena Heffernan, Jon Koenraad, Paul M. |
author_sort | Gajjela, Raja Sekhar Reddy |
collection | PubMed |
description | [Image: see text] We present a detailed atomic-resolution study of morphology and substrate etching mechanism in InAs/InP droplet epitaxy quantum dots (QDs) grown by metal–organic vapor phase epitaxy via cross-sectional scanning tunneling microscopy (X-STM). Two different etching processes are observed depending on the crystallization temperature: local drilling and long-range etching. In local drilling occurring at temperatures of ≤500 °C, the In droplet locally liquefies the InP underneath and the P atoms can easily diffuse out of the droplet to the edges. During crystallization, the As atoms diffuse into the droplet and crystallize at the solid–liquid interface, forming an InAs etch pit underneath the QD. In long-range etching, occurring at higher temperatures of >500 °C, the InP layer is destabilized and the In atoms from the surroundings migrate toward the droplet. The P atoms can easily escape from the surface into the vacuum, forming trenches around the QD. We show for the first time the formation of trenches and long-range etching in InAs/InP QDs with atomic resolution. Both etching processes can be suppressed by growing a thin layer of InGaAs prior to the droplet deposition. The QD composition is estimated by finite element modeling in combination with X-STM. The change in the morphology of QDs due to etching can strongly influence the fine structure splitting. Therefore, the current atomic-resolution study sheds light on the morphology and etching behavior as a function of crystallization temperature and provides a valuable insight into the formation of InAs/InP droplet epitaxy QDs which have potential applications in quantum information technologies. |
format | Online Article Text |
id | pubmed-9237823 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | American Chemical Society |
record_format | MEDLINE/PubMed |
spelling | pubmed-92378232022-06-29 Control of Morphology and Substrate Etching in InAs/InP Droplet Epitaxy Quantum Dots for Single and Entangled Photon Emitters Gajjela, Raja Sekhar Reddy Sala, Elisa Maddalena Heffernan, Jon Koenraad, Paul M. ACS Appl Nano Mater [Image: see text] We present a detailed atomic-resolution study of morphology and substrate etching mechanism in InAs/InP droplet epitaxy quantum dots (QDs) grown by metal–organic vapor phase epitaxy via cross-sectional scanning tunneling microscopy (X-STM). Two different etching processes are observed depending on the crystallization temperature: local drilling and long-range etching. In local drilling occurring at temperatures of ≤500 °C, the In droplet locally liquefies the InP underneath and the P atoms can easily diffuse out of the droplet to the edges. During crystallization, the As atoms diffuse into the droplet and crystallize at the solid–liquid interface, forming an InAs etch pit underneath the QD. In long-range etching, occurring at higher temperatures of >500 °C, the InP layer is destabilized and the In atoms from the surroundings migrate toward the droplet. The P atoms can easily escape from the surface into the vacuum, forming trenches around the QD. We show for the first time the formation of trenches and long-range etching in InAs/InP QDs with atomic resolution. Both etching processes can be suppressed by growing a thin layer of InGaAs prior to the droplet deposition. The QD composition is estimated by finite element modeling in combination with X-STM. The change in the morphology of QDs due to etching can strongly influence the fine structure splitting. Therefore, the current atomic-resolution study sheds light on the morphology and etching behavior as a function of crystallization temperature and provides a valuable insight into the formation of InAs/InP droplet epitaxy QDs which have potential applications in quantum information technologies. American Chemical Society 2022-05-30 2022-06-24 /pmc/articles/PMC9237823/ /pubmed/35783681 http://dx.doi.org/10.1021/acsanm.2c01197 Text en © 2022 The Authors. Published by American Chemical Society https://creativecommons.org/licenses/by/4.0/Permits the broadest form of re-use including for commercial purposes, provided that author attribution and integrity are maintained (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Gajjela, Raja Sekhar Reddy Sala, Elisa Maddalena Heffernan, Jon Koenraad, Paul M. Control of Morphology and Substrate Etching in InAs/InP Droplet Epitaxy Quantum Dots for Single and Entangled Photon Emitters |
title | Control of Morphology and Substrate Etching in InAs/InP
Droplet Epitaxy Quantum Dots for Single and Entangled Photon Emitters |
title_full | Control of Morphology and Substrate Etching in InAs/InP
Droplet Epitaxy Quantum Dots for Single and Entangled Photon Emitters |
title_fullStr | Control of Morphology and Substrate Etching in InAs/InP
Droplet Epitaxy Quantum Dots for Single and Entangled Photon Emitters |
title_full_unstemmed | Control of Morphology and Substrate Etching in InAs/InP
Droplet Epitaxy Quantum Dots for Single and Entangled Photon Emitters |
title_short | Control of Morphology and Substrate Etching in InAs/InP
Droplet Epitaxy Quantum Dots for Single and Entangled Photon Emitters |
title_sort | control of morphology and substrate etching in inas/inp
droplet epitaxy quantum dots for single and entangled photon emitters |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9237823/ https://www.ncbi.nlm.nih.gov/pubmed/35783681 http://dx.doi.org/10.1021/acsanm.2c01197 |
work_keys_str_mv | AT gajjelarajasekharreddy controlofmorphologyandsubstrateetchingininasinpdropletepitaxyquantumdotsforsingleandentangledphotonemitters AT salaelisamaddalena controlofmorphologyandsubstrateetchingininasinpdropletepitaxyquantumdotsforsingleandentangledphotonemitters AT heffernanjon controlofmorphologyandsubstrateetchingininasinpdropletepitaxyquantumdotsforsingleandentangledphotonemitters AT koenraadpaulm controlofmorphologyandsubstrateetchingininasinpdropletepitaxyquantumdotsforsingleandentangledphotonemitters |