Cargando…
Compositionally Aware Phylogenetic Beta-Diversity Measures Better Resolve Microbiomes Associated with Phenotype
Microbiome data have several specific characteristics (sparsity and compositionality) that introduce challenges in data analysis. The integration of prior information regarding the data structure, such as phylogenetic structure and repeated-measure study designs, into analysis, is an effective appro...
Autores principales: | Martino, Cameron, McDonald, Daniel, Cantrell, Kalen, Dilmore, Amanda Hazel, Vázquez-Baeza, Yoshiki, Shenhav, Liat, Shaffer, Justin P., Rahman, Gibraan, Armstrong, George, Allaband, Celeste, Song, Se Jin, Knight, Rob |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Society for Microbiology
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9238373/ https://www.ncbi.nlm.nih.gov/pubmed/35477286 http://dx.doi.org/10.1128/msystems.00050-22 |
Ejemplares similares
-
Uniform Manifold Approximation and Projection (UMAP) Reveals Composite Patterns and Resolves Visualization Artifacts in Microbiome Data
por: Armstrong, George, et al.
Publicado: (2021) -
Context-aware dimensionality reduction deconvolutes gut microbial community dynamics
por: Martino, Cameron, et al.
Publicado: (2020) -
Determination of Effect Sizes for Power Analysis for Microbiome Studies Using Large Microbiome Databases
por: Rahman, Gibraan, et al.
Publicado: (2023) -
BIRDMAn: A Bayesian differential abundance framework that enables robust inference of host-microbe associations
por: Rahman, Gibraan, et al.
Publicado: (2023) -
Efficient computation of Faith's phylogenetic diversity with applications in characterizing microbiomes
por: Armstrong, George, et al.
Publicado: (2021)