Cargando…

Visualizing the pH in Escherichia coli Colonies via the Sensor Protein mCherryEA Allows High-Throughput Screening of Mutant Libraries

Cytoplasmic pH in bacteria is tightly regulated by diverse active mechanisms and interconnected regulatory processes. Many processes and regulators underlying pH homeostasis have been identified via phenotypic screening of strain libraries for nongrowth at low or high pH values. Direct screens with...

Descripción completa

Detalles Bibliográficos
Autores principales: Hartmann, Fabian Stefan Franz, Weiß, Tamara, Shen, Jing, Smahajcsik, Dóra, Savickas, Simonas, Seibold, Gerd Michael
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Society for Microbiology 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9238402/
https://www.ncbi.nlm.nih.gov/pubmed/35430898
http://dx.doi.org/10.1128/msystems.00219-22
_version_ 1784737042218876928
author Hartmann, Fabian Stefan Franz
Weiß, Tamara
Shen, Jing
Smahajcsik, Dóra
Savickas, Simonas
Seibold, Gerd Michael
author_facet Hartmann, Fabian Stefan Franz
Weiß, Tamara
Shen, Jing
Smahajcsik, Dóra
Savickas, Simonas
Seibold, Gerd Michael
author_sort Hartmann, Fabian Stefan Franz
collection PubMed
description Cytoplasmic pH in bacteria is tightly regulated by diverse active mechanisms and interconnected regulatory processes. Many processes and regulators underlying pH homeostasis have been identified via phenotypic screening of strain libraries for nongrowth at low or high pH values. Direct screens with respect to changes of the internal pH in mutant strain collections are limited by laborious methods, which include fluorescent dyes and radioactive probes. Genetically encoded biosensors equip single organisms or strain libraries with an internal sensor molecule during the generation of the strain. Here, we used the pH-sensitive mCherry variant mCherryEA as a ratiometric pH biosensor. We visualized the internal pH of Escherichia coli colonies on agar plates by the use of a GelDoc imaging system. Combining this imaging technology with robot-assisted colony picking and spotting allowed us to screen and select mutants with altered internal pH values from a small transposon mutagenesis-derived E. coli library. Identification of the transposon (Tn) insertion sites in strains with altered internal pH levels revealed that the transposon was inserted into trkH (encoding a transmembrane protein of the potassium uptake system) or rssB (encoding the adaptor protein RssB, which mediates the proteolytic degradation of the general stress response regulator RpoS), two genes known to be associated with pH homeostasis and pH stress adaptation. This successful screening approach demonstrates that the pH sensor-based analysis of arrayed colonies on agar plates is a sensitive approach for the rapid identification of genes involved in pH homeostasis or pH stress adaptation in E. coli. IMPORTANCE Phenotypic screening of strain libraries on agar plates has become a versatile tool to understand gene functions and to optimize biotechnological platform organisms. Screening is supported by genetically encoded biosensors that allow to easily measure intracellular processes. For this purpose, transcription factor-based biosensors have emerged as the sensor type of choice. Here, the target stimulus initiates the activation of a response gene (e.g., a fluorescent protein), followed by transcription, translation, and maturation. Due to this mechanistic principle, biosensor readouts are delayed and cannot report the actual intracellular state of the cell in real time. To capture rapid intracellular processes adequately, fluorescent reporter proteins are extensively applied. However, these sensor types have not previously been used for phenotypic screenings. To take advantage of their properties, we established here an imaging method that allows application of a rapid ratiometric sensor protein for assessing the internal pH of colonies in a high-throughput manner.
format Online
Article
Text
id pubmed-9238402
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher American Society for Microbiology
record_format MEDLINE/PubMed
spelling pubmed-92384022022-06-29 Visualizing the pH in Escherichia coli Colonies via the Sensor Protein mCherryEA Allows High-Throughput Screening of Mutant Libraries Hartmann, Fabian Stefan Franz Weiß, Tamara Shen, Jing Smahajcsik, Dóra Savickas, Simonas Seibold, Gerd Michael mSystems Methods and Protocols Cytoplasmic pH in bacteria is tightly regulated by diverse active mechanisms and interconnected regulatory processes. Many processes and regulators underlying pH homeostasis have been identified via phenotypic screening of strain libraries for nongrowth at low or high pH values. Direct screens with respect to changes of the internal pH in mutant strain collections are limited by laborious methods, which include fluorescent dyes and radioactive probes. Genetically encoded biosensors equip single organisms or strain libraries with an internal sensor molecule during the generation of the strain. Here, we used the pH-sensitive mCherry variant mCherryEA as a ratiometric pH biosensor. We visualized the internal pH of Escherichia coli colonies on agar plates by the use of a GelDoc imaging system. Combining this imaging technology with robot-assisted colony picking and spotting allowed us to screen and select mutants with altered internal pH values from a small transposon mutagenesis-derived E. coli library. Identification of the transposon (Tn) insertion sites in strains with altered internal pH levels revealed that the transposon was inserted into trkH (encoding a transmembrane protein of the potassium uptake system) or rssB (encoding the adaptor protein RssB, which mediates the proteolytic degradation of the general stress response regulator RpoS), two genes known to be associated with pH homeostasis and pH stress adaptation. This successful screening approach demonstrates that the pH sensor-based analysis of arrayed colonies on agar plates is a sensitive approach for the rapid identification of genes involved in pH homeostasis or pH stress adaptation in E. coli. IMPORTANCE Phenotypic screening of strain libraries on agar plates has become a versatile tool to understand gene functions and to optimize biotechnological platform organisms. Screening is supported by genetically encoded biosensors that allow to easily measure intracellular processes. For this purpose, transcription factor-based biosensors have emerged as the sensor type of choice. Here, the target stimulus initiates the activation of a response gene (e.g., a fluorescent protein), followed by transcription, translation, and maturation. Due to this mechanistic principle, biosensor readouts are delayed and cannot report the actual intracellular state of the cell in real time. To capture rapid intracellular processes adequately, fluorescent reporter proteins are extensively applied. However, these sensor types have not previously been used for phenotypic screenings. To take advantage of their properties, we established here an imaging method that allows application of a rapid ratiometric sensor protein for assessing the internal pH of colonies in a high-throughput manner. American Society for Microbiology 2022-04-18 /pmc/articles/PMC9238402/ /pubmed/35430898 http://dx.doi.org/10.1128/msystems.00219-22 Text en Copyright © 2022 Hartmann et al. https://creativecommons.org/licenses/by/4.0/This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International license (https://creativecommons.org/licenses/by/4.0/) .
spellingShingle Methods and Protocols
Hartmann, Fabian Stefan Franz
Weiß, Tamara
Shen, Jing
Smahajcsik, Dóra
Savickas, Simonas
Seibold, Gerd Michael
Visualizing the pH in Escherichia coli Colonies via the Sensor Protein mCherryEA Allows High-Throughput Screening of Mutant Libraries
title Visualizing the pH in Escherichia coli Colonies via the Sensor Protein mCherryEA Allows High-Throughput Screening of Mutant Libraries
title_full Visualizing the pH in Escherichia coli Colonies via the Sensor Protein mCherryEA Allows High-Throughput Screening of Mutant Libraries
title_fullStr Visualizing the pH in Escherichia coli Colonies via the Sensor Protein mCherryEA Allows High-Throughput Screening of Mutant Libraries
title_full_unstemmed Visualizing the pH in Escherichia coli Colonies via the Sensor Protein mCherryEA Allows High-Throughput Screening of Mutant Libraries
title_short Visualizing the pH in Escherichia coli Colonies via the Sensor Protein mCherryEA Allows High-Throughput Screening of Mutant Libraries
title_sort visualizing the ph in escherichia coli colonies via the sensor protein mcherryea allows high-throughput screening of mutant libraries
topic Methods and Protocols
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9238402/
https://www.ncbi.nlm.nih.gov/pubmed/35430898
http://dx.doi.org/10.1128/msystems.00219-22
work_keys_str_mv AT hartmannfabianstefanfranz visualizingthephinescherichiacolicoloniesviathesensorproteinmcherryeaallowshighthroughputscreeningofmutantlibraries
AT weißtamara visualizingthephinescherichiacolicoloniesviathesensorproteinmcherryeaallowshighthroughputscreeningofmutantlibraries
AT shenjing visualizingthephinescherichiacolicoloniesviathesensorproteinmcherryeaallowshighthroughputscreeningofmutantlibraries
AT smahajcsikdora visualizingthephinescherichiacolicoloniesviathesensorproteinmcherryeaallowshighthroughputscreeningofmutantlibraries
AT savickassimonas visualizingthephinescherichiacolicoloniesviathesensorproteinmcherryeaallowshighthroughputscreeningofmutantlibraries
AT seiboldgerdmichael visualizingthephinescherichiacolicoloniesviathesensorproteinmcherryeaallowshighthroughputscreeningofmutantlibraries