Cargando…
Prognostic Value of Exercise Capacity in Kidney Transplant Candidates
BACKGROUND: Exercise stress testing for cardiovascular assessment in kidney transplant candidates has been shown to be a feasible alternative to pharmacologic methods. Exercise stress testing allows the additional assessment of exercise capacity, which may have prognostic value for long‐term cardiov...
Autores principales: | , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9238638/ https://www.ncbi.nlm.nih.gov/pubmed/35699178 http://dx.doi.org/10.1161/JAHA.121.025862 |
_version_ | 1784737104222224384 |
---|---|
author | Tan, Sean Thang, Yi Wen Mulley, William R. Polkinghorne, Kevan R. Ramkumar, Satish Cheng, Kevin Chan, Jasmine Galligan, John Nolan, Mark Brown, Adam J. Moir, Stuart Cameron, James D. Nicholls, Stephen J. Mottram, Philip M. Nerlekar, Nitesh |
author_facet | Tan, Sean Thang, Yi Wen Mulley, William R. Polkinghorne, Kevan R. Ramkumar, Satish Cheng, Kevin Chan, Jasmine Galligan, John Nolan, Mark Brown, Adam J. Moir, Stuart Cameron, James D. Nicholls, Stephen J. Mottram, Philip M. Nerlekar, Nitesh |
author_sort | Tan, Sean |
collection | PubMed |
description | BACKGROUND: Exercise stress testing for cardiovascular assessment in kidney transplant candidates has been shown to be a feasible alternative to pharmacologic methods. Exercise stress testing allows the additional assessment of exercise capacity, which may have prognostic value for long‐term cardiovascular outcomes in pre‐transplant recipients. This study aimed to evaluate the prognostic value of exercise capacity on long‐term cardiovascular outcomes in kidney transplant candidates. METHODS AND RESULTS: We retrospectively evaluated exercise capacity in 898 consecutive kidney transplant candidates between 2013 and 2020 who underwent symptom‐limited exercise stress echocardiography for pre‐transplant cardiovascular assessment. Exercise capacity was measured by age‐ and sex‐predicted metabolic equivalents (METs). The primary outcome was incident major adverse cardiovascular events, defined as cardiac death, non‐fatal myocardial infarction, and stroke. Cox proportional hazard multivariable modeling was performed to define major adverse cardiovascular events predictors with transplantation treated as a time‐varying covariate. A total of 429 patients (48%) achieved predicted METs. During follow‐up, 93 (10%) developed major adverse cardiovascular events and 525 (58%) underwent transplantation. Achievement of predicted METs was independently associated with reduced major adverse cardiovascular events (hazard ratio [HR] 0.49; [95% CI 0.29–0.82], P=0.007), as was transplantation (HR, 0.52; [95% CI 0.30–0.91], P=0.02). Patients achieving predicted METs on pre‐transplant exercise stress echocardiography had favorable outcomes that were independent (HR, 0.78; [95% CI 0.32–1.92], P=0.59) and of similar magnitude to subsequent transplantation (HR, 0.97; [95% CI 0.42–2.25], P=0.95). CONCLUSIONS: Achievement of predicted METs on pre‐transplant exercise stress echocardiography confers excellent prognosis independent of and of similar magnitude to subsequent kidney transplantation. Future studies should assess the benefit on exercise training in this population. |
format | Online Article Text |
id | pubmed-9238638 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | John Wiley and Sons Inc. |
record_format | MEDLINE/PubMed |
spelling | pubmed-92386382022-06-30 Prognostic Value of Exercise Capacity in Kidney Transplant Candidates Tan, Sean Thang, Yi Wen Mulley, William R. Polkinghorne, Kevan R. Ramkumar, Satish Cheng, Kevin Chan, Jasmine Galligan, John Nolan, Mark Brown, Adam J. Moir, Stuart Cameron, James D. Nicholls, Stephen J. Mottram, Philip M. Nerlekar, Nitesh J Am Heart Assoc Original Research BACKGROUND: Exercise stress testing for cardiovascular assessment in kidney transplant candidates has been shown to be a feasible alternative to pharmacologic methods. Exercise stress testing allows the additional assessment of exercise capacity, which may have prognostic value for long‐term cardiovascular outcomes in pre‐transplant recipients. This study aimed to evaluate the prognostic value of exercise capacity on long‐term cardiovascular outcomes in kidney transplant candidates. METHODS AND RESULTS: We retrospectively evaluated exercise capacity in 898 consecutive kidney transplant candidates between 2013 and 2020 who underwent symptom‐limited exercise stress echocardiography for pre‐transplant cardiovascular assessment. Exercise capacity was measured by age‐ and sex‐predicted metabolic equivalents (METs). The primary outcome was incident major adverse cardiovascular events, defined as cardiac death, non‐fatal myocardial infarction, and stroke. Cox proportional hazard multivariable modeling was performed to define major adverse cardiovascular events predictors with transplantation treated as a time‐varying covariate. A total of 429 patients (48%) achieved predicted METs. During follow‐up, 93 (10%) developed major adverse cardiovascular events and 525 (58%) underwent transplantation. Achievement of predicted METs was independently associated with reduced major adverse cardiovascular events (hazard ratio [HR] 0.49; [95% CI 0.29–0.82], P=0.007), as was transplantation (HR, 0.52; [95% CI 0.30–0.91], P=0.02). Patients achieving predicted METs on pre‐transplant exercise stress echocardiography had favorable outcomes that were independent (HR, 0.78; [95% CI 0.32–1.92], P=0.59) and of similar magnitude to subsequent transplantation (HR, 0.97; [95% CI 0.42–2.25], P=0.95). CONCLUSIONS: Achievement of predicted METs on pre‐transplant exercise stress echocardiography confers excellent prognosis independent of and of similar magnitude to subsequent kidney transplantation. Future studies should assess the benefit on exercise training in this population. John Wiley and Sons Inc. 2022-06-14 /pmc/articles/PMC9238638/ /pubmed/35699178 http://dx.doi.org/10.1161/JAHA.121.025862 Text en © 2022 The Authors. Published on behalf of the American Heart Association, Inc., by Wiley. https://creativecommons.org/licenses/by-nc-nd/4.0/This is an open access article under the terms of the http://creativecommons.org/licenses/by-nc-nd/4.0/ (https://creativecommons.org/licenses/by-nc-nd/4.0/) License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non‐commercial and no modifications or adaptations are made. |
spellingShingle | Original Research Tan, Sean Thang, Yi Wen Mulley, William R. Polkinghorne, Kevan R. Ramkumar, Satish Cheng, Kevin Chan, Jasmine Galligan, John Nolan, Mark Brown, Adam J. Moir, Stuart Cameron, James D. Nicholls, Stephen J. Mottram, Philip M. Nerlekar, Nitesh Prognostic Value of Exercise Capacity in Kidney Transplant Candidates |
title | Prognostic Value of Exercise Capacity in Kidney Transplant Candidates |
title_full | Prognostic Value of Exercise Capacity in Kidney Transplant Candidates |
title_fullStr | Prognostic Value of Exercise Capacity in Kidney Transplant Candidates |
title_full_unstemmed | Prognostic Value of Exercise Capacity in Kidney Transplant Candidates |
title_short | Prognostic Value of Exercise Capacity in Kidney Transplant Candidates |
title_sort | prognostic value of exercise capacity in kidney transplant candidates |
topic | Original Research |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9238638/ https://www.ncbi.nlm.nih.gov/pubmed/35699178 http://dx.doi.org/10.1161/JAHA.121.025862 |
work_keys_str_mv | AT tansean prognosticvalueofexercisecapacityinkidneytransplantcandidates AT thangyiwen prognosticvalueofexercisecapacityinkidneytransplantcandidates AT mulleywilliamr prognosticvalueofexercisecapacityinkidneytransplantcandidates AT polkinghornekevanr prognosticvalueofexercisecapacityinkidneytransplantcandidates AT ramkumarsatish prognosticvalueofexercisecapacityinkidneytransplantcandidates AT chengkevin prognosticvalueofexercisecapacityinkidneytransplantcandidates AT chanjasmine prognosticvalueofexercisecapacityinkidneytransplantcandidates AT galliganjohn prognosticvalueofexercisecapacityinkidneytransplantcandidates AT nolanmark prognosticvalueofexercisecapacityinkidneytransplantcandidates AT brownadamj prognosticvalueofexercisecapacityinkidneytransplantcandidates AT moirstuart prognosticvalueofexercisecapacityinkidneytransplantcandidates AT cameronjamesd prognosticvalueofexercisecapacityinkidneytransplantcandidates AT nichollsstephenj prognosticvalueofexercisecapacityinkidneytransplantcandidates AT mottramphilipm prognosticvalueofexercisecapacityinkidneytransplantcandidates AT nerlekarnitesh prognosticvalueofexercisecapacityinkidneytransplantcandidates |