Cargando…

p53‐Dependent Mitochondrial Compensation in Heart Failure With Preserved Ejection Fraction

BACKGROUND: Heart failure with preserved ejection fraction (HFpEF) accounts for 50% of patients with heart failure. Clinically, HFpEF prevalence shows age and gender biases. Although the majority of patients with HFpEF are elderly, there is an emergence of young patients with HFpEF. A better underst...

Descripción completa

Detalles Bibliográficos
Autores principales: Chen, Xiaonan, Lin, Hao, Xiong, Weiyao, Pan, Jianan, Huang, Shuying, Xu, Shan, He, Shufang, Lei, Ming, Chang, Alex Chia Yu, Zhang, Huili
Formato: Online Artículo Texto
Lenguaje:English
Publicado: John Wiley and Sons Inc. 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9238719/
https://www.ncbi.nlm.nih.gov/pubmed/35656994
http://dx.doi.org/10.1161/JAHA.121.024582
Descripción
Sumario:BACKGROUND: Heart failure with preserved ejection fraction (HFpEF) accounts for 50% of patients with heart failure. Clinically, HFpEF prevalence shows age and gender biases. Although the majority of patients with HFpEF are elderly, there is an emergence of young patients with HFpEF. A better understanding of the underlying pathogenic mechanism is urgently needed. Here, we aimed to determine the role of aging in the pathogenesis of HFpEF. METHODS AND RESULTS: HFpEF dietary regimen (high‐fat diet + Nω‐Nitro‐L‐arginine methyl ester hydrochloride) was used to induce HFpEF in wild type and telomerase RNA knockout mice (second‐generation and third‐generation telomerase RNA component knockout), an aging murine model. First, both male and female animals develop HFpEF equally. Second, cardiac wall thickening preceded diastolic dysfunction in all HFpEF animals. Third, accelerated HFpEF onset was observed in second‐generation telomerase RNA component knockout (at 6 weeks) and third‐generation telomerase RNA component knockout (at 4 weeks) compared with wild type (8 weeks). Fourth, we demonstrate that mitochondrial respiration transitioned from compensatory state (normal basal yet loss of maximal respiratory capacity) to dysfunction (loss of both basal and maximal respiratory capacity) in a p53 dosage dependent manner. Last, using myocardial‐specific p53 knockout animals, we demonstrate that loss of p53 activation delays the development of HFpEF. CONCLUSIONS: Here we demonstrate that p53 activation plays a role in the pathogenesis of HFpEF. We show that short telomere animals exhibit a basal level of p53 activation, mitochondria upregulate mtDNA encoded genes as a mean to compensate for blocked mitochondrial biogenesis, and loss of myocardial p53 delays HFpEF onset in high fat diet + Nω‐Nitro‐L‐arginine methyl ester hydrochloride challenged murine model.