Cargando…
Machine Learning–Based Risk Model for Predicting Early Mortality After Surgery for Infective Endocarditis
BACKGROUND: The early mortality after surgery for infective endocarditis is high. Although risk models help identify patients at high risk, most current scoring systems are inaccurate or inconvenient. The objective of this study was to construct an accurate and easy‐to‐use prediction model to identi...
Autores principales: | Luo, Li, Huang, Sui‐qing, Liu, Chuang, Liu, Quan, Dong, Shuohui, Yue, Yuan, Liu, Kai‐zheng, Huang, Lin, Wang, Shun‐jun, Li, Hua‐yang, Zheng, Shaoyi, Wu, Zhong‐kai |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9238722/ https://www.ncbi.nlm.nih.gov/pubmed/35656984 http://dx.doi.org/10.1161/JAHA.122.025433 |
Ejemplares similares
-
Preoperative serum albumin: a promising indicator of early mortality after surgery for infective endocarditis
por: Huang, Suiqing, et al.
Publicado: (2021) -
Prognostic Value of Blood Urea Nitrogen for Short-Term Mortality in Patients with Infective Endocarditis
por: Wang, Qi, et al.
Publicado: (2023) -
Machine learning based early warning system enables accurate mortality risk prediction for COVID-19
por: Gao, Yue, et al.
Publicado: (2020) -
Surgery for Infective Endocarditis: Outcomes and Predictors of Mortality in 360 Consecutive Patients
por: Farag, Mina, et al.
Publicado: (2017) -
Differences in mortality in patients undergoing surgery for infective endocarditis according to age and valvular surgery
por: Østergaard, Lauge, et al.
Publicado: (2020)