Cargando…

Interactions between Loci Contributing to Antimicrobial Resistance and Virulence in Neisseria gonorrhoeae

In a recent mBio article, Ayala et al. (mBio 13:e00276-22, 2022, https://doi.org/10.1128/mbio.00276-22) identified a single nucleotide variant in the repressor gdhR in Neisseria gonorrhoeae that reduces binding to the promoter of the virulence factor lctP and thereby increases its expression. The al...

Descripción completa

Detalles Bibliográficos
Autor principal: Mortimer, Tatum D.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Society for Microbiology 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9239038/
https://www.ncbi.nlm.nih.gov/pubmed/35420483
http://dx.doi.org/10.1128/mbio.00412-22
_version_ 1784737196335431680
author Mortimer, Tatum D.
author_facet Mortimer, Tatum D.
author_sort Mortimer, Tatum D.
collection PubMed
description In a recent mBio article, Ayala et al. (mBio 13:e00276-22, 2022, https://doi.org/10.1128/mbio.00276-22) identified a single nucleotide variant in the repressor gdhR in Neisseria gonorrhoeae that reduces binding to the promoter of the virulence factor lctP and thereby increases its expression. The allele (gdhR6) frequently co-occurs with mutations in the mtr operon promoter that reduce expression of another repressor, mtrR, resulting in overexpression of the efflux pump-encoding mtrCDE and increased antimicrobial resistance. Because mtrR also represses gdhR, a decline in mtrR would decrease expression of lctP. Hypothesizing that gdhR6 arose to circumvent the impact of mtrR promoter mutations on lctP expression, the authors analyzed these loci in genomes of N. gonorrhoeae isolates from the preantibiotic era. Surprisingly, they found isolates with gdhR6 prior to selection for mtrR resistance-associated alleles. These results suggest that independent and perhaps interacting pressures have influenced the co-occurrence of these alleles.
format Online
Article
Text
id pubmed-9239038
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher American Society for Microbiology
record_format MEDLINE/PubMed
spelling pubmed-92390382022-06-29 Interactions between Loci Contributing to Antimicrobial Resistance and Virulence in Neisseria gonorrhoeae Mortimer, Tatum D. mBio Commentary In a recent mBio article, Ayala et al. (mBio 13:e00276-22, 2022, https://doi.org/10.1128/mbio.00276-22) identified a single nucleotide variant in the repressor gdhR in Neisseria gonorrhoeae that reduces binding to the promoter of the virulence factor lctP and thereby increases its expression. The allele (gdhR6) frequently co-occurs with mutations in the mtr operon promoter that reduce expression of another repressor, mtrR, resulting in overexpression of the efflux pump-encoding mtrCDE and increased antimicrobial resistance. Because mtrR also represses gdhR, a decline in mtrR would decrease expression of lctP. Hypothesizing that gdhR6 arose to circumvent the impact of mtrR promoter mutations on lctP expression, the authors analyzed these loci in genomes of N. gonorrhoeae isolates from the preantibiotic era. Surprisingly, they found isolates with gdhR6 prior to selection for mtrR resistance-associated alleles. These results suggest that independent and perhaps interacting pressures have influenced the co-occurrence of these alleles. American Society for Microbiology 2022-04-14 /pmc/articles/PMC9239038/ /pubmed/35420483 http://dx.doi.org/10.1128/mbio.00412-22 Text en Copyright © 2022 Mortimer. https://creativecommons.org/licenses/by/4.0/This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International license (https://creativecommons.org/licenses/by/4.0/) .
spellingShingle Commentary
Mortimer, Tatum D.
Interactions between Loci Contributing to Antimicrobial Resistance and Virulence in Neisseria gonorrhoeae
title Interactions between Loci Contributing to Antimicrobial Resistance and Virulence in Neisseria gonorrhoeae
title_full Interactions between Loci Contributing to Antimicrobial Resistance and Virulence in Neisseria gonorrhoeae
title_fullStr Interactions between Loci Contributing to Antimicrobial Resistance and Virulence in Neisseria gonorrhoeae
title_full_unstemmed Interactions between Loci Contributing to Antimicrobial Resistance and Virulence in Neisseria gonorrhoeae
title_short Interactions between Loci Contributing to Antimicrobial Resistance and Virulence in Neisseria gonorrhoeae
title_sort interactions between loci contributing to antimicrobial resistance and virulence in neisseria gonorrhoeae
topic Commentary
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9239038/
https://www.ncbi.nlm.nih.gov/pubmed/35420483
http://dx.doi.org/10.1128/mbio.00412-22
work_keys_str_mv AT mortimertatumd interactionsbetweenlocicontributingtoantimicrobialresistanceandvirulenceinneisseriagonorrhoeae