Cargando…

The PTS(Ntr)-KdpDE-KdpFABC Pathway Contributes to Low Potassium Stress Adaptation and Competitive Nodulation of Sinorhizobium fredii

The rhizobium-legume symbiosis is essential for sustainable agriculture by reducing nitrogen fertilizer input, but its efficiency varies under fluctuating soil conditions and resources. The nitrogen-related phosphotransferase system (PTS(Ntr)) consisting of PtsP, PtsO, and PtsN is required for optim...

Descripción completa

Detalles Bibliográficos
Autores principales: Feng, Xue-Ying, Tian, Yu, Cui, Wen-Jing, Li, Yue-Zhen, Wang, Dan, Liu, Yanbo, Jiao, Jian, Chen, Wen-Xin, Tian, Chang-Fu
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Society for Microbiology 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9239096/
https://www.ncbi.nlm.nih.gov/pubmed/35491828
http://dx.doi.org/10.1128/mbio.03721-21
_version_ 1784737214620499968
author Feng, Xue-Ying
Tian, Yu
Cui, Wen-Jing
Li, Yue-Zhen
Wang, Dan
Liu, Yanbo
Jiao, Jian
Chen, Wen-Xin
Tian, Chang-Fu
author_facet Feng, Xue-Ying
Tian, Yu
Cui, Wen-Jing
Li, Yue-Zhen
Wang, Dan
Liu, Yanbo
Jiao, Jian
Chen, Wen-Xin
Tian, Chang-Fu
author_sort Feng, Xue-Ying
collection PubMed
description The rhizobium-legume symbiosis is essential for sustainable agriculture by reducing nitrogen fertilizer input, but its efficiency varies under fluctuating soil conditions and resources. The nitrogen-related phosphotransferase system (PTS(Ntr)) consisting of PtsP, PtsO, and PtsN is required for optimal nodulation and nitrogen fixation efficiency of the broad-host-range Sinorhizobium fredii CCBAU45436 associated with diverse legumes, though the underlying mechanisms remain elusive. This work characterizes the PtsN-KdpDE-KdpFABC pathway that contributes to low potassium adaptation and competitive nodulation of CCBAU45436. Among three PtsN, PtsN(1) is the major functional homolog. The unphosphorylated PtsN(1) binds the sensory kinase KdpD through a non-canonical interaction with the GAF domain of KdpD, while the region covering HisKA-HATPase domains mediates the interaction of KdpD with the response regulator KdpE. KdpE directly activates the kdpFABC operon encoding the conserved high-affinity potassium uptake system. Disruption of this signaling pathway leads to reduced nodule number, nodule occupancy, and low potassium adaptation ability, but without notable effects on rhizoplane colonization. The induction of key nodulation genes NIN and ENOD40 in host roots during early symbiotic interactions is impaired when inoculating the kdpBC mutant that shows delayed nodulation. The nodulation defect of the kdpBC mutant can be rescued by supplying replete potassium. Potassium is actively consumed by both prokaryotes and eukaryotes, and components of the PTS(Ntr)-KdpDE-KdpFABC pathway are widely conserved in bacteria, highlighting the global importance of this pathway in bacteria-host interactions.
format Online
Article
Text
id pubmed-9239096
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher American Society for Microbiology
record_format MEDLINE/PubMed
spelling pubmed-92390962022-06-29 The PTS(Ntr)-KdpDE-KdpFABC Pathway Contributes to Low Potassium Stress Adaptation and Competitive Nodulation of Sinorhizobium fredii Feng, Xue-Ying Tian, Yu Cui, Wen-Jing Li, Yue-Zhen Wang, Dan Liu, Yanbo Jiao, Jian Chen, Wen-Xin Tian, Chang-Fu mBio Research Article The rhizobium-legume symbiosis is essential for sustainable agriculture by reducing nitrogen fertilizer input, but its efficiency varies under fluctuating soil conditions and resources. The nitrogen-related phosphotransferase system (PTS(Ntr)) consisting of PtsP, PtsO, and PtsN is required for optimal nodulation and nitrogen fixation efficiency of the broad-host-range Sinorhizobium fredii CCBAU45436 associated with diverse legumes, though the underlying mechanisms remain elusive. This work characterizes the PtsN-KdpDE-KdpFABC pathway that contributes to low potassium adaptation and competitive nodulation of CCBAU45436. Among three PtsN, PtsN(1) is the major functional homolog. The unphosphorylated PtsN(1) binds the sensory kinase KdpD through a non-canonical interaction with the GAF domain of KdpD, while the region covering HisKA-HATPase domains mediates the interaction of KdpD with the response regulator KdpE. KdpE directly activates the kdpFABC operon encoding the conserved high-affinity potassium uptake system. Disruption of this signaling pathway leads to reduced nodule number, nodule occupancy, and low potassium adaptation ability, but without notable effects on rhizoplane colonization. The induction of key nodulation genes NIN and ENOD40 in host roots during early symbiotic interactions is impaired when inoculating the kdpBC mutant that shows delayed nodulation. The nodulation defect of the kdpBC mutant can be rescued by supplying replete potassium. Potassium is actively consumed by both prokaryotes and eukaryotes, and components of the PTS(Ntr)-KdpDE-KdpFABC pathway are widely conserved in bacteria, highlighting the global importance of this pathway in bacteria-host interactions. American Society for Microbiology 2022-05-02 /pmc/articles/PMC9239096/ /pubmed/35491828 http://dx.doi.org/10.1128/mbio.03721-21 Text en Copyright © 2022 Feng et al. https://creativecommons.org/licenses/by/4.0/This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International license (https://creativecommons.org/licenses/by/4.0/) .
spellingShingle Research Article
Feng, Xue-Ying
Tian, Yu
Cui, Wen-Jing
Li, Yue-Zhen
Wang, Dan
Liu, Yanbo
Jiao, Jian
Chen, Wen-Xin
Tian, Chang-Fu
The PTS(Ntr)-KdpDE-KdpFABC Pathway Contributes to Low Potassium Stress Adaptation and Competitive Nodulation of Sinorhizobium fredii
title The PTS(Ntr)-KdpDE-KdpFABC Pathway Contributes to Low Potassium Stress Adaptation and Competitive Nodulation of Sinorhizobium fredii
title_full The PTS(Ntr)-KdpDE-KdpFABC Pathway Contributes to Low Potassium Stress Adaptation and Competitive Nodulation of Sinorhizobium fredii
title_fullStr The PTS(Ntr)-KdpDE-KdpFABC Pathway Contributes to Low Potassium Stress Adaptation and Competitive Nodulation of Sinorhizobium fredii
title_full_unstemmed The PTS(Ntr)-KdpDE-KdpFABC Pathway Contributes to Low Potassium Stress Adaptation and Competitive Nodulation of Sinorhizobium fredii
title_short The PTS(Ntr)-KdpDE-KdpFABC Pathway Contributes to Low Potassium Stress Adaptation and Competitive Nodulation of Sinorhizobium fredii
title_sort pts(ntr)-kdpde-kdpfabc pathway contributes to low potassium stress adaptation and competitive nodulation of sinorhizobium fredii
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9239096/
https://www.ncbi.nlm.nih.gov/pubmed/35491828
http://dx.doi.org/10.1128/mbio.03721-21
work_keys_str_mv AT fengxueying theptsntrkdpdekdpfabcpathwaycontributestolowpotassiumstressadaptationandcompetitivenodulationofsinorhizobiumfredii
AT tianyu theptsntrkdpdekdpfabcpathwaycontributestolowpotassiumstressadaptationandcompetitivenodulationofsinorhizobiumfredii
AT cuiwenjing theptsntrkdpdekdpfabcpathwaycontributestolowpotassiumstressadaptationandcompetitivenodulationofsinorhizobiumfredii
AT liyuezhen theptsntrkdpdekdpfabcpathwaycontributestolowpotassiumstressadaptationandcompetitivenodulationofsinorhizobiumfredii
AT wangdan theptsntrkdpdekdpfabcpathwaycontributestolowpotassiumstressadaptationandcompetitivenodulationofsinorhizobiumfredii
AT liuyanbo theptsntrkdpdekdpfabcpathwaycontributestolowpotassiumstressadaptationandcompetitivenodulationofsinorhizobiumfredii
AT jiaojian theptsntrkdpdekdpfabcpathwaycontributestolowpotassiumstressadaptationandcompetitivenodulationofsinorhizobiumfredii
AT chenwenxin theptsntrkdpdekdpfabcpathwaycontributestolowpotassiumstressadaptationandcompetitivenodulationofsinorhizobiumfredii
AT tianchangfu theptsntrkdpdekdpfabcpathwaycontributestolowpotassiumstressadaptationandcompetitivenodulationofsinorhizobiumfredii
AT fengxueying ptsntrkdpdekdpfabcpathwaycontributestolowpotassiumstressadaptationandcompetitivenodulationofsinorhizobiumfredii
AT tianyu ptsntrkdpdekdpfabcpathwaycontributestolowpotassiumstressadaptationandcompetitivenodulationofsinorhizobiumfredii
AT cuiwenjing ptsntrkdpdekdpfabcpathwaycontributestolowpotassiumstressadaptationandcompetitivenodulationofsinorhizobiumfredii
AT liyuezhen ptsntrkdpdekdpfabcpathwaycontributestolowpotassiumstressadaptationandcompetitivenodulationofsinorhizobiumfredii
AT wangdan ptsntrkdpdekdpfabcpathwaycontributestolowpotassiumstressadaptationandcompetitivenodulationofsinorhizobiumfredii
AT liuyanbo ptsntrkdpdekdpfabcpathwaycontributestolowpotassiumstressadaptationandcompetitivenodulationofsinorhizobiumfredii
AT jiaojian ptsntrkdpdekdpfabcpathwaycontributestolowpotassiumstressadaptationandcompetitivenodulationofsinorhizobiumfredii
AT chenwenxin ptsntrkdpdekdpfabcpathwaycontributestolowpotassiumstressadaptationandcompetitivenodulationofsinorhizobiumfredii
AT tianchangfu ptsntrkdpdekdpfabcpathwaycontributestolowpotassiumstressadaptationandcompetitivenodulationofsinorhizobiumfredii